Nettle Manual

For the Nettle Library version 3.4

Niels Moller

This manual is for the Nettle library (version 3.4), a low-level cryptographic library.
Originally written 2001 by Niels Méller, updated 2017.
This manual is placed in the public domain. You may freely copy it, in whole

or in part, with or without modification. Attribution is appreciated, but not
required.

Table of Contents

1 Introduction............ 1
2 Copyright 2
3 Conventions.................. . 3
4 Example..... 4
5 Linking 6
6 Compatibility 7
7 Reference.......... 8
7.1 Hash functions 8
7.1.1 Recommended hash functions............... 8
T.1.1.1 SHA2SG . oo e 8

T.1.1.2 SHA224 . .. 9

T.1.1.3 SHADL2 . oo 9

7.1.1.4 SHA384 and other variants of SHAS512 10

T.1.1.5 SHASB-224 . .o 11

T.1.1.6 SHAS3-256 . ..ot 12

T 117 SHASZ-384 ..o 12

T1.1.8 SHAZ-B12 . o 13

T.1.1.9 SHAKE-256 . .« oo 13

7.1.2 Miscellaneous hash functions 14
7.1.2.1 STREEBOGS 12 ..ot 14

7.1.2.2 STREEBOG256 . ..ottt e 14

T7.0.2.3 SM .o 15

7.1.3 Legacy hash functions............ 16
T.1.3. 1 M5 .o 16

T.1.3.2 MDD o 16

T.1.3.3 MDA . 17

7.1.3.4 RIPEMDIGOottt e e 18

T.1.3.0 SHAL. ..o 18

7.1.3.6 GOSTHASH94 and GOSTHASH94CP 19

7.1.4 The struct nettle_hash abstraction 20

7.2 Cipher functions i i 20
T7.2.1 AES 22

7.2.2 Arcfour 23

T7.2.3 ATCUtWO. ..o 24

724 Blowfish 25

725 Camellia. . ..o 27
T7.2.6 CASTI28 . 29
727 ChaCha.o e 30
7.2.7.1 32-bit counter variant, 30
7.2.8 DES 31
7.2.9 DES3 . 32
7210 Salsa20o e 33
T211 Serpent 34
7.2.12 Twofish. ... 35
7.2.13 The struct nettle_cipher abstraction................. 35
7.3 Cipher modes. 36
7.3.1 Cipher Block Chaining, 37
7.3.1.1 Utility macros.o 37
7.3.1.2 Cipher-specific functions................... 38
7.3.2 Counter mode.oouiuiiiiiii i 38
7.3.3 Cipher Feedback mode, 39
7.3.4 XEX-based tweaked-codebook mode with ciphertext stealing
.. 42
7.3.4.1 General (XTS) interface..................oooii... 43
7.3.4.2 XTS-AES interface..............oo i, 43
7.4 Authenticated encryption with associated data 44
T4 EAX 45
7.4.1.1 General EAX interface............................... 45
7.4.1.2 EAX helper macros.........coouiiiiiiiieiniiea.n, 46
7.4.1.3 EAX-AES128 interface............. ... it 47
7.4.2 Galois counter mode i 47
7.4.2.1 General GCM interfaceooiiiiiiiiiiin. 48
7.4.2.2 GCM helper macroscovviiiiiiiiniiea.n. 49
7.4.2.3 GCM-AES interface............ooooiiiiiiiiiiiin, 50
7.4.2.4 GCM-Camellia interfacet 51
7.4.3 Counter with CBC-MACmode........................... 52
7.4.3.1 General CCM interface 53
7.4.3.2 CCM message interfaceooi... 54
7.4.3.3 CCM-AES interface.......... ...t iii.. 55
7.4.4 ChaCha-Polyl305o 56
7.4.5 Synthetic Initialization Vector AEAD..................... 58
7.4.5.1 General interface................... 58
7.4.5.2 SIV-CMAC-AES interface 58
7.4.6 The struct nettle_aead abstraction 59
7.5 Keyed Hash Functions 60
751 HMAC .o e 60
7.5. 1.1 HMAC-MDS ..ottt et e 62
7.5.1.2 HMAC-RIPEMDI60ovt et 62
7.5.1.3 HMAC-SHAL. ..ottt e 63
7.5.1.4 HMAC-SHA256 . ..ottt e 63
7.5.1.5 HMAC-SHABI2 .ottt 63
7.5.1.6 HMAC-SM3 .ttt e e 64

T7.5.2 UMAC . 64

ii

T7.5.3 OMAC . 66
T7.5.4 Polyl305. . e 67
7.6 Key derivation Functions............ i 68
7.6.1 HKDF: HMAC-based Extract-and-Expand................ 69
T7.6.2 PBKDE2 ..ottt e e 69
7.6.3 Concrete PBKDF2 functionscoovviiiieannn... 70
7.6.3.1 PBKDF2-HMAC-SHAL00 70
7.6.3.2 PBKDF2-HMAC-SHA256ooiiieiiie i 70
7.6.3.3 PBKDF2-HMAC-SHA384t 70
7.6.3.4 PBKDF2-HMAC-SHAS12 ...t 71

7.7 Public-key algorithms o 71
T L RS A . 72
7.7.1.1 Nettle’s RSA support ..., 73
T7 2 DS A L 78
7.7.2.1 Nettle’s DSA support ..o, 80
7.7.2.2 OId, deprecated, DSA interface 82
7.7.3 EIptic curves. ... 83
7.7.3.1 Side-channel silence 84
7.7.3.2 ECDSA .. 84
7.7.3.3 GOSTDSA ... 86
7.7.3.4 Curve25519 and Curved4d8 ..., 87
7.7.3.5 EdDSA ... 88

7.8 Randomnessoiiiiiiiiiiiiii 90
T.8.1 YaITOW. ..ottt 92
7.9 ASCIL encodingouiiin e e 94
7.10 Miscellaneous functions ..., 97
7.11 Compatibility functions........... i, 97
8 Traditional Nettle Soup....................... 98
9 Installation..................................... 99

Function and Concept Index.................... 100

iii

Chapter 1: Introduction 1

1 Introduction

Nettle is a cryptographic library that is designed to fit easily in more or less any context:
In crypto toolkits for object-oriented languages (C++, Python, Pike, ...), in applications like
LSH or GNUPG, or even in kernel space. In most contexts, you need more than the basic
cryptographic algorithms, you also need some way to keep track of available algorithms, their
properties and variants. You often have some algorithm selection process, often dictated by
a protocol you want to implement.

And as the requirements of applications differ in subtle and not so subtle ways, an API
that fits one application well can be a pain to use in a different context. And that is why
there are so many different cryptographic libraries around.

Nettle tries to avoid this problem by doing one thing, the low-level crypto stuff, and
providing a simple but general interface to it. In particular, Nettle doesn’t do algorithm
selection. It doesn’t do memory allocation. It doesn’t do any 1/0.

The idea is that one can build several application and context specific interfaces on
top of Nettle, and share the code, test cases, benchmarks, documentation, etc. Examples
are the Nettle module for the Pike language, and LSH, which both use an object-oriented
abstraction on top of the library.

This manual explains how to use the Nettle library. It also tries to provide some back-
ground on the cryptography, and advice on how to best put it to use.

Chapter 2: Copyright 2

2 Copyright

Nettle is dual licenced under the GNU General Public License version 2 or later, and the
GNU Lesser General Public License version 3 or later. When using Nettle, you must comply
fully with all conditions of at least one of these licenses. A few of the individual files are
licensed under more permissive terms, or in the public domain. To find the current status
of particular files, you have to read the copyright notices at the top of the files.

This manual is in the public domain. You may freely copy it in whole or in part, e.g.,
into documentation of programs that build on Nettle. Attribution, as well as contribution
of improvements to the text, is of course appreciated, but it is not required.

Chapter 3: Conventions 3

3 Conventions

For each supported algorithm, there is an include file that defines a context struct, a few
constants, and declares functions for operating on the context. The context struct encap-
sulates all information needed by the algorithm, and it can be copied or moved in memory
with no unexpected effects.

For consistency, functions for different algorithms are very similar, but there are some
differences, for instance reflecting if the key setup or encryption function differ for encryp-
tion and decryption, and whether or not key setup can fail. There are also differences
between algorithms that don’t show in function prototypes, but which the application must
nevertheless be aware of. There is no big difference between the functions for stream ciphers
and for block ciphers, although they should be used quite differently by the application.

If your application uses more than one algorithm of the same type, you should probably
create an interface that is tailor-made for your needs, and then write a few lines of glue
code on top of Nettle.

By convention, for an algorithm named foo, the struct tag for the context struct is
foo_ctx, constants and functions uses prefixes like FOO_BLOCK_SIZE (a constant) and foo_
set_key (a function).

In all functions, strings are represented with an explicit length, of type size_t, and a
pointer of type uint8_t * or const uint8_t *. For functions that transform one string
to another, the argument order is length, destination pointer and source pointer. Source
and destination areas are usually of the same length. When they differ, e.g., for ccm_
encrypt_message, the length argument specifies the size of the destination area. Source
and destination pointers may be equal, so that you can process strings in place, but source
and destination areas must not overlap in any other way.

Many of the functions lack return value and can never fail. Those functions which can
fail, return one on success and zero on failure.

Chapter 4: Example 4

4 Example

A simple example program that reads a file from standard input and writes its SHA1 check-
sum on standard output should give the flavor of Nettle.

#include <stdio.h>
#include <stdlib.h>

#include <nettle/shal.h>
#define BUF_SIZE 1000

static void
display_hex(unsigned length, uint8_t *data)
{

unsigned 1i;

for (i = 0; i<length; i++)
printf ("%02x ", datalil);

printf ("\n");
}

int
main(int argc, char **argv)
{
struct shal_ctx ctx;
uint8_t buffer [BUF_SIZE];
uint8_t digest[SHA1_DIGEST_SIZE];

shal_init (&ctx);
for (;;)
{
int done = fread(buffer, 1, sizeof(buffer), stdin);
shal_update(&ctx, done, buffer);
if (done < sizeof (buffer))
break;
}
if (ferror(stdin))
return EXIT_FAILURE;

shal_digest(&ctx, SHA1_DIGEST_SIZE, digest);

display_hex(SHA1_DIGEST_SIZE, digest);
return EXIT_SUCCESS;

Chapter 4: Example 5)

On a typical Unix system, this program can be compiled and linked with the command
line

gcc sha-example.c -o sha-example -lnettle

Chapter 5: Linking 6

5 Linking

Nettle actually consists of two libraries, ‘libnettle’ and ‘libhogweed’. The ‘libhogweed’
library contains those functions of Nettle that uses bignum operations, and depends on
the GMP library. With this division, linking works the same for both static and dynamic
libraries.

If an application uses only the symmetric crypto algorithms of Nettle (i.e., block ciphers,
hash functions, and the like), it’s sufficient to link with -1nettle. If an application also
uses public-key algorithms, the recommended linker flags are ~-1hogweed -1nettle -1lgmp.
If the involved libraries are installed as dynamic libraries, it may be sufficient to link with
just -lhogweed, and the loader will resolve the dependencies automatically.

Chapter 6: Compatibility 7

6 Compatibility

When you write a program using the Nettle library, it’s desirable to have it work together
not only with exactly the same version of Nettle you had at hand, but with other current and
future versions. If a different version of Nettle is used at compile time, i.e., you recompile
it using the header and library files belonging to a different version, we talk about API
compatibility (for Application Programming Interface). If a different version of Nettle isn’t
used until link time, we talk about ABI compatibility (Application Binary Interface) or
binary compatibility. ABI compatibility matters mainly when using dynamic linking with
a shared library. E.g., a user has an executable linking at run-time with ‘libnettle.so’,
and then updates to a later version of the shared library, without updating or recompiling
the executable.

Nettle aims to provide backwards compatibility, i.e., a program written for a particular
version of the Nettle library should usually work fine with later version of the library. Note
that the opposite is not supported: The program should not be expected to work with older
versions of the Nettle library; and ABI breakage can be unobvious. E.g, the later version
may define a new library symbol, and let header files redefine an old API name as an alias
for the new symbol. If the later version ensures that the old symbol is still defined in the
library, this change is backwards compatible: A program compiled using headers from the
older version can be successfully linked with either version of the library. But if you compile
the same program using headers from the later version of the library, and attempt to link
with the older version, you’ll get an undefined reference to the new symbol.

API compatibility is rarely broken; exceptions are noted in the NEWS file. For example,
the key size argument to the function cast128_set_key was dropped in the Nettle-3.0
release, and all programs using that function had to be updated to work with the new
version.

ABI compatibility is broken occasionally. This is also noted in the NEWS file, and
the name of the shared library is updated to prevent accidental run-time linking with the
wrong version. All programs have to be recompiled before they can link with the new
version. Since names are different, multiple versions can be installed on the same system,
with a mix of programs linking to one version or the other.

Under some circumstances, it is possible to have a single program linking dynamically
with two binary incompatible versions of the Nettle library, thanks to the use of symbol
versioning. Consider a program calling functions in both Nettle and GnuTLS. For the direct
dependency on Nettle, the program is linked with a particular version of the Nettle shared
library. GnuTLS uses Nettle internally, but does not expose any Nettle data structures
or the like in its own ABI. In this situation, the GnuTLS shared library may link with
a different version of the Nettle library. Then both versions of the Nettle library will be
loaded into the program’s address space, and each reference to a symbol will be resolved to
the correct version.

Finally, some of Nettle’s symbols are internal. They carry a leading underscore, and are
not declared in installed header files. They can be used for local or experimental purposes,
but programs referring directly to those symbols get neither API nor ABI compatibility,
not even between minor versions.

Chapter 7: Reference 8

7 Reference
This chapter describes all the Nettle functions, grouped by family.

7.1 Hash functions

A cryptographic hash function is a function that takes variable size strings, and maps them
to strings of fixed, short, length. There are naturally lots of collisions, as there are more
possible 1MB files than 20 byte strings. But the function is constructed such that is hard to
find the collisions. More precisely, a cryptographic hash function H should have the following
properties:

One-way Given a hash value H(x) it is hard to find a string x that hashes to that value.

Collision-resistant
It is hard to find two different strings, x and y, such that H(x) = H(y).

Hash functions are useful as building blocks for digital signatures, message authentication
codes, pseudo random generators, association of unique ids to documents, and many other
things.

The most commonly used hash functions are MD5 and SHA1. Unfortunately, both
these fail the collision-resistance requirement; cryptologists have found ways to construct
colliding inputs. The recommended hash functions for new applications are SHA2 (with
main variants SHA256 and SHA512). At the time of this writing (Autumn 2015), SHA3
has recently been standardized, and the new SHA3 and other top SHA3 candidates may
also be reasonable alternatives.

7.1.1 Recommended hash functions

The following hash functions have no known weaknesses, and are suitable for new applica-
tions. The SHA?2 family of hash functions were specified by NIST, intended as a replacement
for SHAL.

7.1.1.1 SHA256

SHA256 is a member of the SHA2 family. It outputs hash values of 256 bits, or 32 octets.

Nettle defines SHA256 in ‘<nettle/sha2.h>’.

struct sha256_ctx [Context struct]

SHA256_DIGEST_SIZE [Constant|
The size of a SHA256 digest, i.e. 32.

SHA256_BLOCK_SIZE [Constant)|
The internal block size of SHA256. Useful for some special constructions, in particular
HMAC-SHA256.

void sha256_init (struct sha256_ctx *ctx) [Function]
Initialize the SHA256 state.

void sha256_update (struct sha256_ctx *ctx, size_t length, const [Function]
uint8_t *data)
Hash some more data.

Chapter 7: Reference 9

void sha256_digest (struct sha256_ctx *ctx, size_t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA256_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha256_init.

Earlier versions of nettle defined SHA256 in the header file ‘<nettle/sha.h>’, which is
now deprecated, but kept for compatibility.

7.1.1.2 SHA224

SHA224 is a variant of SHA256, with a different initial state, and with the output trun-
cated to 224 bits, or 28 octets. Nettle defines SHA224 in ‘<nettle/sha2.h>’ (and in
‘<nettle/sha.h>’, for backwards compatibility).

struct sha224_ctx [Context struct]

SHA224 DIGEST_SIZE [Constant)|
The size of a SHA224 digest, i.e. 28.

SHA224_BLOCK_SIZE [Constant)]
The internal block size of SHA224. Useful for some special constructions, in particular
HMAC-SHA224.

void sha224_init (struct sha224_ctx *ctx) [Function]
Initialize the SHA224 state.

void sha224_update (struct sha224_ctx *ctx, size_t length, const [Function]
uint8_t *data)
Hash some more data.

void sha224_digest (struct sha224_ctx *ctx, size_t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA224_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as sha224_init.

7.1.1.3 SHA512

SHA512 is a larger sibling to SHA256, with a very similar structure but with both the
output and the internal variables of twice the size. The internal variables are 64 bits rather
than 32, making it significantly slower on 32-bit computers. It outputs hash values of 512
bits, or 64 octets. Nettle defines SHA512 in ‘<nettle/sha2.h>’ (and in ‘<nettle/sha.h>’,
for backwards compatibility).

struct shab12_ctx [Context struct]

SHA512_DIGEST_SIZE [Constant|
The size of a SHA512 digest, i.e. 64.

Chapter 7: Reference 10

SHA512_BLOCK_SIZE [Constant|
The internal block size of SHA512, 128. Useful for some special constructions, in
particular HMAC-SHA512.

void shab12_init (struct sha512_ctx *ctx) [Function]
Initialize the SHA512 state.

void shab12_update (struct sha512_ctx *ctx, size_t length, const [Function]
uint8-t *data)
Hash some more data.

void shabl12_digest (struct sha512_ctx *ctx, size_t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA512_DIGEST_SIZE, in which case only the first length octets
of the digest are written.

This function also resets the context in the same way as shab512_init.

7.1.1.4 SHA384 and other variants of SHA512

Several variants of SHA512 have been defined, with a different initial state, and with the
output truncated to shorter length than 512 bits. Naming is a bit confused, these algorithms
are called SHA512-224, SHA512-256 and SHA384, for output sizes of 224, 256 and 384 bits,
respectively. Nettle defines these in ‘<nettle/sha2.h>’ (and in ‘<nettle/sha.h>’; for
backwards compatibility).

struct shab12_224_ ctx [Context struct]
struct shab12_256_ctx [Context struct]
struct sha384_ctx [Context struct]

These context structs are all the same as shab12_ctx. They are defined as simple
preprocessor aliases, which may cause some problems if used as identifiers for other
purposes. So avoid doing that.

SHAB12_224_DIGEST_SIZE [Constant]
SHA512_256_DIGEST_SIZE [Constant]
SHA384_DIGEST_SIZE [Constant|
The digest size for each variant, i.e., 28, 32, and 48, respectively.
SHA512_224_BLOCK_SIZE [Constant)|
SHA512_256_BLOCK_SIZE [Constant|
SHA384_BLOCK_SIZE [Constant|

The internal block size, same as SHA512_BLOCK_SIZE, i.e., 128. Useful for some
special constructions, in particular HMAC-SHA384.

void shab12_224_init (struct shab512_224_ctx *ctx) [Function]
void shab12_256_init (struct shab512_256_ctx *ctx) [Function]
void sha384_init (struct sha384_ctx *ctx) [Function]

Initialize the context struct.

Chapter 7: Reference 11

void shab12_224_update (struct sha512_224_ctx *ctx, size_t length, [Function]
const uint8-t *data)

void shab12_256_update (struct sha512_256_ctx *ctx, size_t length, [Function]
const uint8-t *data)

void sha384_update (struct sha384_ctx *ctx, size_-t length, const [Function]

uint8_t *data)
Hash some more data. These are all aliases for sha512_update, which does the same
thing.

void shab12_224_digest (struct sha512_224_ctx *ctx, size_t length, [Function]
uint8_t *digest)
void shab12_256_digest (struct sha512_256_ctx *ctx, size_t length, [Function]
uint8-t *digest)
void sha384_digest (struct sha384_ctx *ctx, size_t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than the specified digest size, in which case only the first length octets
of the digest are written.

These function also reset the context in the same way as the corresponding init
function.

7.1.1.5 SHA3-224

The SHA3 hash functions were specified by NIST in response to weaknesses in SHAI,
and doubts about SHA2 hash functions which structurally are very similar to SHAT.
SHA3 is a result of a competition, where the winner, also known as Keccak, was de-
signed by Guido Bertoni, Joan Daemen, Michaél Peeters and Gilles Van Assche. It is
structurally very different from all widely used earlier hash functions. Like SHA2, there
are several variants, with output sizes of 224, 256, 384 and 512 bits (28, 32, 48 and 64
octets, respectively). In August 2015, it was formally standardized by NIST, as FIPS 202,
https://dx.doi.org/10.6028/NIST.FIPS.202.

Note that the SHA3 implementation in earlier versions of Nettle was based on the spec-
ification at the time Keccak was announced as the winner of the competition, which is
incompatible with the final standard and hence with current versions of Nettle. The
‘nette/sha3.h’ defines a preprocessor symbol NETTLE_SHA3_FIPS202 to indicate confor-
mance with the standard.

NETTLE_SHA3_FIPS202 [Constant|
Defined to 1 in Nettle versions supporting FIPS 202. Undefined in earlier versions.

Nettle defines SHA3-224 in ‘<nettle/sha3.h>’.

struct sha3_224_ctx [Context struct]

SHA3_224_DIGEST_SIZE [Constant|
The size of a SHA3_224 digest, i.e., 28.

SHA3_224_BLOCK_SIZE [Constant|
The internal block size of SHA3_224.

https://dx.doi.org/10.6028/NIST.FIPS.202

Chapter 7: Reference 12

void sha3_224_init (struct sha3_224_ctx *ctx) [Function]
Initialize the SHA3-224 state.

void sha3_224_update (struct sha3-224_ctx *ctx, size_t length, const [Function]
uint8_t *data)
Hash some more data.

void sha3_224_digest (struct sha3-224_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_224_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

7.1.1.6 SHA3-256

This is SHA3 with 256-bit output size, and possibly the most useful of the SHA3 hash
functions.

Nettle defines SHA3-256 in ‘<nettle/sha3.h>’.

struct sha3_256_ctx [Context struct]

SHA3_256_DIGEST_SIZE [Constant)|
The size of a SHA3_256 digest, i.e., 32.

SHA3_256_BLOCK_SIZE [Constant)]
The internal block size of SHA3_256.

void sha3_256_init (struct sha3_256_ctx *ctx) [Function]
Initialize the SHA3-256 state.

void sha3_256_update (struct sha3-256_ctx *ctx, size_t length, const [Function]
uint8-t *data)
Hash some more data.

void sha3_256_digest (struct sha3-256_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_256_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

7.1.1.7 SHA3-384
This is SHA3 with 384-bit output size.
Nettle defines SHA3-384 in ‘<nettle/sha3.h>’.

struct sha3_384_ctx [Context struct]

SHA3_384_DIGEST_SIZE [Constant|
The size of a SHA3_384 digest, i.e., 48.

Chapter 7: Reference 13

SHA3_384_BLOCK_SIZE [Constant|
The internal block size of SHA3_384.

void sha3_384_init (struct sha3-384_ctx *ctx) [Function]
Initialize the SHA3-384 state.

void sha3_384_update (struct sha3-384_ctx *ctx, size_t length, const [Function]
uint8-t *data)
Hash some more data.

void sha3_384_digest (struct sha3-384_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_384_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

7.1.1.8 SHA3-512

This is SHA3 with 512-bit output size.
Nettle defines SHA3-512 in ‘<nettle/sha3.h>’.

struct sha3_512_ctx [Context struct]

SHA3_512_DIGEST_SIZE [Constant)]
The size of a SHA3_512 digest, i.e. 64.

SHA3_512_BLOCK_SIZE [Constant|
The internal block size of SHA3_512.

void sha3_512_init (struct sha3-512_ctx *ctx) [Function]
Initialize the SHA3-512 state.

void sha3_512_update (struct sha3_-512_ctx *ctx, size_t length, const [Function]
uint8_t *data)
Hash some more data.

void sha3_512_digest (struct sha3_-512_ctx *ctx, size_t length, [Function]
uint8-t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA3_512_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context.

7.1.1.9 SHAKE-256

In addition to those SHA-3 hash functions, Nettle also provides a SHA-3 extendable-output
function (XOF), SHAKE-256. Unlike SHA-3 hash functions, SHAKE can produce an output
digest of any desired length.

To use SHAKE256, the context struct, init and update functions are the same as for
SHA3-256. To get a SHAKE256 digest, the following function is used instead of sha3_256_
digest. For an output size of SHA3_256_DIGEST_SIZE, security is equivalent to SHA3-256

Chapter 7: Reference 14

(but the digest is different). Increasing output size further does not increase security in
terms of collision or preimage resistance. It can be seen as a built in pseudorandomness
generator.

void sha3_256_shake (struct shake256_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and produces a SHAKE256 digest, writing it to digest.
length can be of arbitrary size.

This function also resets the context.
7.1.2 Miscellaneous hash functions

7.1.2.1 STREEBOG512

STREEBOGH512 is a member of the Streebog (GOST R 34.11-2012) family. It outputs hash
values of 512 bits, or 64 octets. Nettle defines STREEBOG512 in ‘<nettle/streebog.h>’.

struct streebogbl2_ctx [Context struct]

STREEBOG512_DIGEST_SIZE [Constant]
The size of a STREEBOG512 digest, i.e. 64.

STREEBOG512_BLOCK_SIZE [Constant|
The internal block size of STREEBOGbH512. Useful for some special constructions, in
particular HMAC-STREEBOG512.

void streebogbl2_init (struct streeboghl2_ctx *ctx) [Function]
Initialize the STREEBOG512 state.

void streebogbl2_update (struct streebogbl2_ctx *ctx, size_t [Function]
length, const uint8_t *data)
Hash some more data.

void streebogbl2_digest (struct streebogbl2_ctx *ctx, size_t [Function]
length, uint8_-t *digest)

Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than STREEBOG512_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as streebogb12_init.

7.1.2.2 STREEBOG256

STREEBOG256 is a variant of STREEBOGbH512, with a different initial state, and
with the output truncated to 256 bits, or 32 octets. Nettle defines STREEBOG256 in
‘<nettle/streebog.h>".

struct streebog256_ctx [Context struct]

STREEBOG256_DIGEST_SIZE [Constant|
The size of a STREEBOG256 digest, i.e. 32.

Chapter 7: Reference 15

STREEBOG256_BLOCK_SIZE [Constant|
The internal block size of STREEBOG256. Useful for some special constructions, in
particular HMAC-STREEBOG256.

void streebog256_init (struct streebog256_ctx *ctx) [Function]
Initialize the STREEBOG256 state.

void streebog256_update (struct streebog256_ctx *ctx, size_t [Function]
length, const uint8_t *data)
Hash some more data.

void streebog256_digest (struct streebog256_ctx *ctx, size_t [Function]
length, uint8_-t *digest)

Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than STREEBOG256_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as streebog256_init.

7.1.2.3 SM3

SM3 is a cryptographic hash function standard adopted by the government of the People’s
Republic of China, which was issued by the Cryptography Standardization Technical Com-
mittee of China on December 17, 2010. The corresponding standard is GM /T 0004-2012
"SM3 Cryptographic Hash Algorithm".

SM3 algorithm is a hash algorithm in ShangMi cryptosystems. SM3 is mainly used for
digital signature and verification, message authentication code generation and verification,
random number generation, and the RFC 8998 specification defines the usage of ShangMi
algorithm suite in TLS 1.3, etc. According to the State Cryptography Administration of
China, its security and efficiency are equivalent to SHA-256.

Nettle defines SM3 in ‘<nettle/sm3.h>’.

struct sm3_ctx [Context struct]

SM3_DIGEST_SIZE [Constant|
The size of a SM3 digest, i.e. 32.

SM3_BLOCK_SIZE [Constant]
The internal block size of SM3. Useful for some special constructions, in particular
HMAC-SM3.

void sm3_init (struct sm3_ctx *ctx) [Function]
Initialize the SM3 state.

void sm3_update (struct sm3_ctx *ctx, size_t length, const uint8-t [Function]

*data)
Hash some more data.
void sm3_digest (struct sm3_ctx *ctx, size_t length, uint8_t [Function]
*digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SM3_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

Chapter 7: Reference 16

This function also resets the context in the same way as sm3_init.

7.1.3 Legacy hash functions

The hash functions in this section all have some known weaknesses, and should be avoided
for new applications. These hash functions are mainly useful for compatibility with old
applications and protocols. Some are still considered safe as building blocks for particu-
lar constructions, e.g., there seems to be no known attacks against HMAC-SHA1 or even
HMAC-MD5. In some important cases, use of a “legacy” hash function does not in itself
make the application insecure; if a known weakness is relevant depends on how the hash
function is used, and on the threat model.

7.1.3.1 MD5

MD5 is a message digest function constructed by Ronald Rivest, and described in RFC
1321. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD5 in
‘<nettle/md5.h>".

struct md5_ctx [Context struct]

MD5_DIGEST_SIZE [Constant)|
The size of an MD5 digest, i.e. 16.

MD5_BLOCK_SIZE [Constant|
The internal block size of MD5. Useful for some special constructions, in particular
HMAC-MDS5.

void md5_init (struct md5_ctx *ctx) [Function]

Initialize the MD5 state.

void md5_update (struct md5_ctx *ctx, size-t length, const uint8_t [Function]
*data)
Hash some more data.
void md5_digest (struct md5_ctx *ctx, size-t length, uint8_t [Function]
*digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD5_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md5_init.

The normal way to use MD5 is to call the functions in order: First md5_init, then
md5_update zero or more times, and finally md5_digest. After md5_digest, the context is
reset to its initial state, so you can start over calling md5_update to hash new data.

To start over, you can call md5_init at any time.

7.1.3.2 MD2

MD2 is another hash function of Ronald Rivest’s, described in RFC 1319. It outputs
message digests of 128 bits, or 16 octets. Nettle defines MD2 in ‘<nettle/md2.h>’.

Chapter 7: Reference 17

struct md2_ctx [Context struct]
MD2_DIGEST_SIZE [Constant)|
The size of an MD2 digest, i.e. 16.

MD2_BLOCK_SIZE [Constant]
The internal block size of MD2.

void md2_init (struct md2_ctx *ctx) [Function]
Initialize the MD2 state.

void md2_update (struct md2_ctx *ctx, size_t length, const uint8_t [Function]
*data)
Hash some more data.
void md2_digest (struct md2_ctx *ctx, size_t length, uint8_t [Function]
*digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD2_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md2_init.

7.1.3.3 MD4

MD4 is a predecessor of MD5, described in RFC 1320. Like MD5, it is constructed by
Ronald Rivest. It outputs message digests of 128 bits, or 16 octets. Nettle defines MD4
in ‘<nettle/md4.h>’. Use of MD4 is not recommended, but it is sometimes needed for
compatibility with existing applications and protocols.

struct md4_ctx [Context struct]

MD4_DIGEST_SIZE [Constant)]
The size of an MD4 digest, i.e. 16.

MD4_BLOCK_SIZE [Constant|
The internal block size of MDA4.

void md4_init (struct md4_ctx *ctx) [Function]
Initialize the MD4 state.

void md4_update (struct md4_ctx *ctx, size-t length, const uint8_t [Function]
*data)
Hash some more data.
void md4_digest (struct md4_ctx *ctx, size_t length, uint8_t [Function]
*digest)

Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than MD4_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as md4_init.

Chapter 7: Reference 18

7.1.3.4 RIPEMD160

RIPEMDI160 is a hash function designed by Hans Dobbertin, Antoon Bosselaers, and Bart
Preneel, as a strengthened version of RIPEMD (which, like MD4 and MD5, fails the
collision-resistance requirement). It produces message digests of 160 bits, or 20 octets.
Nettle defined RIPEMD160 in ‘nettle/ripemd160.h’.

struct ripemd160_ctx [Context struct]

RIPEMD160_DIGEST_SIZE [Constant)|
The size of a RIPEMD160 digest, i.e. 20.

RIPEMD160_BLOCK_SIZE [Constant)|
The internal block size of RIPEMD160.

void ripemd160_init (struct ripemd160_ctx *ctx) [Function]
Initialize the RIPEMD160 state.

void ripemd160_update (struct ripemdl60-ctx *ctx, size-t length, [Function]
const uint8-t *data)
Hash some more data.

void ripemd160_digest (struct ripemdl60-ctx *ctx, size_t length, [Function]
uint8-t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than RIPEMD160_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as ripemd160_init.

7.1.3.5 SHA1

SHA1 is a hash function specified by NIST (The U.S. National Institute for Standards
and Technology). It outputs hash values of 160 bits, or 20 octets. Nettle defines SHA1 in
‘<nettle/shal.h>’ (and in ‘<nettle/sha.h>’, for backwards compatibility).

struct shal_ctx [Context struct]

SHA1_DIGEST_SIZE [Constant|
The size of a SHA1 digest, i.e. 20.

SHA1_BLOCK_SIZE [Constant]
The internal block size of SHA1. Useful for some special constructions, in particular
HMAC-SHAL.

void shal_init (struct shal_ctx *ctx) [Function]

Initialize the SHA1 state.

void shal_update (struct shal_ctx *ctx, size_t length, const uint8_t [Function]
*data)
Hash some more data.

Chapter 7: Reference 19

void shal_digest (struct shal_ctx *ctx, size_t length, uint8_t [Function]
*digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than SHA1_DIGEST_SIZE, in which case only the first length octets of
the digest are written.

This function also resets the context in the same way as shal_init.

7.1.3.6 GOSTHASH94 and GOSTHASH94CP

The GOST94 or GOST R 34.11-94 hash algorithm is a Soviet-era algorithm used in Rus-
sian government standards (see RFC 4357). It outputs message digests of 256 bits, or 32
octets. The standard itself does not fix the S-box used by the hash algorith, so there are two
popular variants (the testing S-box from the standard itself and the S-box defined by Cryp-
toPro company, see RFC 4357). Nettle provides support for the former S-box in the form of
GOSTHASH94 hash algorithm and for the latter in the form of GOSTHASH94CP hash algo-
rithm. Nettle defines GOSTHASH94 and GOSTHASH94CP in ‘<nettle/gosthash94.h>’.

struct gosthash94_ctx [Context struct]

GOSTHASH94_DIGEST_SIZE [Constant)|
The size of a GOSTHASH94 digest, i.e. 32.

GOSTHASH94_BLOCK_SIZE [Constant)|

The internal block size of GOSTHASH94, i.e., 32.

void gosthash94_init (struct gosthash94_ctx *ctx) [Function]
Initialize the GOSTHASH94 state.

void gosthash94_update (struct gosthash94_ctx *ctx, size_t length, [Function]
const uint8_-t *data)
Hash some more data.

void gosthash94_digest (struct gosthash94_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Performs final processing and extracts the message digest, writing it to digest. length
may be smaller than GOSTHASH94_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as gosthash94_init.

struct gosthash94cp_ctx [Context struct]

GOSTHASH94CP_DIGEST_SIZE [Constant|
The size of a GOSTHASH94CP digest, i.e. 32.

GOSTHASH94CP_BLOCK_SIZE [Constant]

The internal block size of GOSTHASH94CP, i.e., 32.

void gosthash94cp_init (struct gosthash94cp_ctx *ctx) [Function]
Initialize the GOSTHASH94CP state.

void gosthash94cp_update (struct gosthash94cp_ctx *ctx, size_t [Function]
length, const uint8_t *data)
Hash some more data.

Chapter 7: Reference 20

void gosthash94cp_digest (struct gosthash94cp_ctx *ctx, size_t [Function]
length, uint8_-t *digest)

Performs final processing and extracts the message digest, writing it to digest. length

may be smaller than GOSTHASH94CP_DIGEST_SIZE, in which case only the first length
octets of the digest are written.

This function also resets the context in the same way as gosthash94cp_init.

7.1.4 The struct nettle_hash abstraction

Nettle includes a struct including information about the supported hash functions. It is
defined in ‘<nettle/mettle-meta.h>’, and is used by Nettle’s implementation of HMAC
(see Section 7.5 [Keyed hash functions], page 60).

struct nettle_hash name context_size digest_size block_size init
update digest

The last three attributes are function pointers, of types nettle_hash_init_func *,

nettle_hash_update_func *, and nettle_hash_digest_func *. The first argument

to these functions is void * pointer to a context struct, which is of size context_size.

[Meta struct]

struct nettle_hash nettle_md2
struct nettle_hash nettle_md4
struct nettle_hash nettle_mdb
struct nettle_hash nettle_ripemd160

Constant Struct
Constant Struct
Constant Struct
Constant Struct

struct nettle_hash nettle_shal Constant Struct
struct nettle_hash nettle_sha224 Constant Struct
struct nettle_hash nettle_sha256

struct nettle_hash nettle_sha384 Constant Struct
struct nettle_hash nettle_shabi12 Constant Struct

struct

nettle_hash

nettle_sha3_256

Constant Struct
Constant Struct

struct nettle_hash nettle_gosthash94
struct nettle_hash nettle_gosthash94cp
struct nettle_hash nettle_sm3
These are all the hash functions that Nettle implements.

Constant Struct
Constant Struct

[]
[]
[]
[]
[]
[]
[Constant Struct]
[]
[]
[]
[]
[]
[]

Nettle also exports a list of all these hashes.

const struct nettle_hash ** nettle_get_hashes (void) [Function]
Returns a NULL-terminated list of pointers to supported hash functions. This list
can be used to dynamically enumerate or search the supported algorithms.

nettle_hashes [Macro]
A macro expanding to a call to nettle_get_hashes, so that one could write, e.g.,
nettle_hashes[0]->name for the name of the first hash function on the list. In
earlier versions, this was not a macro but the actual array of pointers. However,
referring directly to the array makes the array size leak into the ABI in some cases.

7.2 Cipher functions

A cipher is a function that takes a message or plaintext and a secret key and transforms it
to a ciphertext. Given only the ciphertext, but not the key, it should be hard to find the

Chapter 7: Reference 21

plaintext. Given matching pairs of plaintext and ciphertext, it should be hard to find the
key.

There are two main classes of ciphers: Block ciphers and stream ciphers.

A block cipher can process data only in fixed size chunks, called blocks. Typical block
sizes are 8 or 16 octets. To encrypt arbitrary messages, you usually have to pad it to an
integral number of blocks, split it into blocks, and then process each block. The simplest
way is to process one block at a time, independent of each other. That mode of operation
is called ECB, Electronic Code Book mode. However, using ECB is usually a bad idea. For
a start, plaintext blocks that are equal are transformed to ciphertext blocks that are equal,
that leaks information about the plaintext. Usually you should apply the cipher is some
“feedback mode”, CBC (Cipher Block Chaining) and CTR (Counter mode) being two of
of the most popular. See See Section 7.3 [Cipher modes|, page 36, for information on how
to apply CBC and CTR with Nettle.

A stream cipher can be used for messages of arbitrary length. A typical stream cipher
is a keyed pseudo-random generator. To encrypt a plaintext message of n octets, you key
the generator, generate n octets of pseudo-random data, and XOR it with the plaintext.
To decrypt, regenerate the same stream using the key, XOR it to the ciphertext, and the
plaintext is recovered.

Caution: The first rule for this kind of cipher is the same as for a One Time Pad: never
ever use the same key twice.

A common misconception is that encryption, by itself, implies authentication. Say that
you and a friend share a secret key, and you receive an encrypted message. You apply the
key, and get a plaintext message that makes sense to you. Can you then be sure that it really
was your friend that wrote the message you're reading? The answer is no. For example, if
you were using a block cipher in ECB mode, an attacker may pick up the message on its
way, and reorder, delete or repeat some of the blocks. Even if the attacker can’t decrypt
the message, he can change it so that you are not reading the same message as your friend
wrote. If you are using a block cipher in CBC mode rather than ECB, or are using a stream
cipher, the possibilities for this sort of attack are different, but the attacker can still make
predictable changes to the message.

It is recommended to always use an authentication mechanism in addition to encrypting
the messages. Popular choices are Message Authentication Codes like HMAC-SHA1 (see
Section 7.5 [Keyed hash functions], page 60), or digital signatures like RSA.

Some ciphers have so called “weak keys”, keys that results in undesirable structure after
the key setup processing, and should be avoided. In Nettle, most key setup functions have
no return value, but for ciphers with weak keys, the return value indicates whether or not
the given key is weak. For good keys, key setup returns 1, and for weak keys, it returns 0.
When possible, avoid algorithms that have weak keys. There are several good ciphers that
don’t have any weak keys.

To encrypt a message, you first initialize a cipher context for encryption or decryption
with a particular key. You then use the context to process plaintext or ciphertext messages.
The initialization is known as key setup. With Nettle, it is recommended to use each context
struct for only one direction, even if some of the ciphers use a single key setup function that
can be used for both encryption and decryption.

Chapter 7: Reference 22

7.2.1 AES

AES is a block cipher, specified by NIST as a replacement for the older DES standard. The
standard is the result of a competition between cipher designers. The winning design, also
known as RIJNDAEL, was constructed by Joan Daemen and Vincent Rijnmen.

Like all the AES candidates, the winning design uses a block size of 128 bits, or 16 octets,
and three possible key-size, 128, 192 and 256 bits (16, 24 and 32 octets) being the allowed
key sizes. It does not have any weak keys. Nettle defines AES in ‘<nettle/aes.h>’, and
there is one context struct for each key size. (Earlier versions of Nettle used a single context
struct, struct aes_ctx, for all key sizes. This interface kept for backwards compatibility).

struct aesl128_ctx [Context struct]
struct aes192_ctx [Context struct]
struct aes256_ctx [Context struct]
struct aes_ctx [Context struct]

Alternative struct, for the old AES interface.

AES_BLOCK_SIZE [Constant)|
The AES block-size, 16.

AES128_KEY_SIZE [Constant)|
AES192_KEY_SIZE [Constant|
AES256_KEY_SIZE [Constant]
[]
[]

AES_MIN_KEY_SIZE Constant

AES_MAX_KEY_SIZE Constant

AES_KEY_SIZE [Constant|

Default AES key size, 32.

void aesl128_set_encrypt_key (struct aes128_ctx *ctx, const uint8_t [Function]
*key)

void aes128_set_decrypt_key (struct aesl28_ctx *ctx, const uint8_t [Function]
*key)

void aesl192_set_encrypt_key (struct aes192_ctx *ctx, const uint8_t [Function]
*key)

void aesl192_set_decrypt_key (struct aesl92_ctx *ctx, const uint8_t [Function]
*key)

void aes256_set_encrypt_key (struct aes256_ctx *ctx, const uint8-t [Function]
*key)

void aes256_set_decrypt_key (struct aes256_ctx *ctx, const uint8_t [Function]
*key)

void aes_set_encrypt_key (struct aes_ctx *ctx, size-t length, const [Function]
uint8-t *key)

void aes_set_decrypt_key (struct aes_ctx *ctx, size_t length, const [Function]

uint8_t *key)
Initialize the cipher, for encryption or decryption, respectively.

Chapter 7: Reference 23

void aesl128_invert_key (struct aes128_ctx *dst, const struct [Function]
aes128_ctx *src)

void aes192_invert_key (struct aes192_ctx *dst, const struct [Function]
aes192_ctx *src)

void aes256_invert_key (struct aes256_ctx *dst, const struct [Function]
aes256_ctx *src)

void aes_invert_key (struct aes_ctx *dst, const struct aes_ctx *src) [Function]

Given a context src initialized for encryption, initializes the context struct dst for
decryption, using the same key. If the same context struct is passed for both src and
dst, it is converted in place. These functions are mainly useful for applications which
needs to both encrypt and decrypt using the same key, because calling, e.g., aes128_
set_encrypt_key and aes128_invert_key, is more efficient than calling aes128_
set_encrypt_key and aes128_set_decrypt_key.

void aesl128_encrypt (struct aes128_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8-t *src)

void aesl192_encrypt (struct aesl192_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8-t *src)

void aes256_encrypt (struct aes256_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)

void aes_encrypt (struct aes_ctx *ctx, size_t length, uint8_t *dst, [Function]

const uint8_t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void aesl128_decrypt (struct aes128_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)

void aesl192_decrypt (struct aesl192_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)

void aes256_decrypt (struct aes256_ctx *ctx, size_t length, uint8-t [Function]
*dst, const uint8_t *src)

void aes_decrypt (struct aes_ctx *ctx, size_t length, uint8_t *dst, [Function]

const uint8-t *src)
Analogous to the encryption functions above.

7.2.2 Arcfour

ARCFOUR is a stream cipher, also known under the trade marked name RC4, and it
is one of the fastest ciphers around. A problem is that the key setup of ARCFOUR is
quite weak, you should never use keys with structure, keys that are ordinary passwords,
or sequences of keys like “secret:1”, “secret:2”, If you have keys that don’t look like
random bit strings, and you want to use ARCFOUR, always hash the key before feeding it
to ARCFOUR. Furthermore, the initial bytes of the generated key stream leak information
about the key; for this reason, it is recommended to discard the first 512 bytes of the key
stream.

/* A more robust key setup function for ARCFOUR */
void

Chapter 7: Reference 24

arcfour_set_key_hashed(struct arcfour_ctx *ctx,
size_t length, const uint8_t *key)
{
struct sha256_ctx hash;
uint8_t digest [SHA256_DIGEST_SIZE];
uint8_t buffer[0x200];

sha256_init (&hash) ;
sha256_update (&hash, length, key);
sha256_digest (&hash, SHA256_DIGEST_SIZE, digest);

arcfour_set_key(ctx, SHA256_DIGEST_SIZE, digest);
arcfour_crypt(ctx, sizeof(buffer), buffer, buffer);

}
Nettle defines ARCFOUR in ‘<nettle/arcfour.h>’.

struct arcfour_ctx [Context struct]

ARCFOUR_MIN_KEY_SIZE [Constant)|
Minimum key size, 1.

ARCFOUR_MAX_KEY_SIZE [Constant|
Maximum key size, 256.

ARCFOUR_KEY_SIZE [Constant|
Default ARCFOUR key size, 16.

void arcfour_set_key (struct arcfour_ctx *ctx, size_t length, const [Function]
uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

void arcfour_crypt (struct arcfour_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)
Encrypt some data. The same function is used for both encryption and decryption.
Unlike the block ciphers, this function modifies the context, so you can split the data
into arbitrary chunks and encrypt them one after another. The result is the same as
if you had called arcfour_crypt only once with all the data.

7.2.3 Arctwo

ARCTWO (also known as the trade marked name RC2) is a block cipher specified in RFC
2268. Nettle also include a variation of the ARCTWO set key operation that lack one
step, to be compatible with the reverse engineered RC2 cipher description, as described in
a Usenet post to sci.crypt by Peter Gutmann.

ARCTWO uses a block size of 64 bits, and variable key-size ranging from 1 to 128
octets. Besides the key, ARCTWO also has a second parameter to key setup, the number
of effective key bits, ekb. This parameter can be used to artificially reduce the key size.
In practice, ekb is usually set equal to the input key size. Nettle defines ARCTWO in
‘<nettle/arctwo.h>’.

Chapter 7: Reference 25

We do not recommend the use of ARCTWO; the Nettle implementation is provided
primarily for interoperability with existing applications and standards.

struct arctwo_ctx [Context struct]
ARCTWO_BLOCK_SIZE [Constant|
The ARCTWO block-size, 8.
ARCTWO_MIN_KEY_SIZE [Constant]
ARCTWO_MAX_KEY_SIZE [Constant|
ARCTWO_KEY_SIZE [Constant)|
Default ARCTWO key size, 8.
void arctwo_set_key_ekb (struct arctwo_ctx *ctx, size-t length, [Function]
const uint8-t *key, unsigned ekb)
void arctwo_set_key (struct arctwo_ctx *ctx, size_t length, const [Function]
uint8_t *key)
void arctwo_set_key_gutmann (struct arctwo_ctx *ctx, size_t [Function]

length, const uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
The first function is the most general one, which lets you provide both the variable
size key, and the desired effective key size (in bits). The maximum value for ekb is
1024, and for convenience, ekb = 0 has the same effect as ekb = 1024.

arctwo_set_key(ctx, length, key) is equivalent to arctwo_set_key_ekb(ctx,
length, key, 8*length), and arctwo_set_key_gutmann(ctx, length, key) is
equivalent to arctwo_set_key_ekb(ctx, length, key, 1024)

void arctwo_encrypt (struct arctwo_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void arctwo_decrypt (struct arctwo_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8-t *src)
Analogous to arctwo_encrypt

7.2.4 Blowfish

BLOWFISH is a block cipher designed by Bruce Schneier. It uses a block size of 64 bits
(8 octets), and a variable key size, up to 448 bits. It has some weak keys. Nettle defines
BLOWFISH in ‘<nettle/blowfish.h>’.

struct blowfish_ctx [Context struct]
BLOWFISH_BLOCK_SIZE [Constant|
The BLOWFISH block-size, 8.

BLOWFISH_MIN_KEY_SIZE [Constant|
Minimum BLOWFISH key size, 8.

Chapter 7: Reference 26

BLOWFISH_MAX_KEY_SIZE [Constant|
Maximum BLOWFISH key size, 56.

BLOWFISH_KEY_SIZE [Constant)]
Default BLOWFISH key size, 16.

int blowfish_set_key (struct blowfish_ctx *ctx, size_t length, const [Function]
uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
Checks for weak keys, returning 1 for good keys and 0 for weak keys. Applications
that don’t care about weak keys can ignore the return value.

blowfish_encrypt or blowfish_decrypt with a weak key will crash with an assert
violation.

void blowfish_encrypt (struct blowfish_ctx *ctx, size_t length, [Function]
uint8-t *dst, const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void blowfish_decrypt (struct blowfish_ctx *ctx, size_t length, [Function]
uint8_t *dst, const uint8_t *src)
Analogous to blowfish_encrypt

int blowfish_bcrypt_hash (char *dst, size_t lenkey, const char [Function]
*key, size_-t lenscheme, const char *scheme, int 1log2rounds, const uint8_t
*salt)

Compute the berypt password hash. The function will return 0 if the hash cannot be
computed due to invalid input. The function will return 1 and store the computed
hash in the array pointed to by dst. The hash is computed based on the chosen
scheme, number of rounds log2rounds and specified salt.

dst must point to a character array of at least BLOWFISH_BCRYPT_HASH_SIZE bytes.
key contains the plaintext password string of size lenkey.

scheme is of size lenscheme and contains either just the chosen scheme (valid schemes
are: 2a, 2b, 2x or 2y), or (the prefix of) an existing hashed password (typically
$2b$10$. . .).

log2rounds contains the log2 of the number of encryption rounds that must be used
to compute the hash. If it is -1 the value will be extracted from scheme.

salt should point to an array of BLOWFISH_BCRYPT_BINSALT_SIZE random bytes to
be used to perturb the hash computation. If it is NULL the salt will be extracted from
scheme.

Sample code to generate a berypt hash:

char password[] = "ExamplePassword";
char scheme[] = "2b";
uint8_t salt [BLOWFISH_BCRYPT_BINSALT_SIZE];

/* Make sure that salt is filled with random bytes */

Chapter 7: Reference 27

char hash[BLOWFISH_BCRYPT_HASH_SIZE];
int result = blowfish_bcrypt (hash,
sizeof (password) - 1, password,
sizeof (scheme) - 1, scheme, 10, salt);
if (result)
printf ("%s\n", hash);

int blowfish_bcrypt_verify (size_t lenkey, const char *key, size_t [Function]
lenhashed, const char *hashed)
Verifies the berypt password hash against the supplied plaintext password. The func-
tion will return O if the password does not match. The function will return 1 if the
password matches.

key contains the plaintext password string of size lenkey.
hashed contains the hashed string of size lenhashed to compare with.
Sample code to verify a berypt hash:

char password[] = "ExamplePassword";
char hashl[] =
"$2y$" /* Hash algorithm version */
"10" /% 2710 hash rounds (strength) */
"$" /x separator */
"1b21Pgo4XumibnJGN3r3s0" /* base64 encoded 16-byte salt */
"u7wE7xNfYDK1AxZffJDCJdVEFTAyevu"; /* Hashedpart */
if (blowfish_bcrypt_verify(sizeof (password) - 1, password,
sizeof (hash) - 1, hash))
printf ("Password is correct.");
else
printf ("Password is incorrect.");

7.2.5 Camellia

Camellia is a block cipher developed by Mitsubishi and Nippon Telegraph and Telephone
Corporation, described in RFC3713. It is recommended by some Japanese and European
authorities as an alternative to AES, and it is one of the selected algorithms in the New
European Schemes for Signatures, Integrity and Encryption (NESSIE) project. The al-
gorithm is patented. The implementation in Nettle is derived from the implementation
released by NTT under the GNU LGPL (v2.1 or later), and relies on the implicit patent
license of the LGPL. There is also a statement of royalty-free licensing for Camellia at
https://www.ntt.co.jp/news/news01e/0104/010417 .html, but this statement has some
limitations which seem problematic for free software.

Camellia uses a the same block size and key sizes as AES: The block size is 128 bits
(16 octets), and the supported key sizes are 128, 192, and 256 bits. The variants with
192 and 256 bit keys are identical, except for the key setup. Nettle defines Camellia in
‘<nettle/camellia.h>’, and there is one context struct for each key size. (Earlier versions
of Nettle used a single context struct, struct camellia_ctx, for all key sizes. This interface
kept for backwards compatibility).

https://www.ntt.co.jp/news/news01e/0104/010417.html

Chapter 7: Reference 28

struct camellial28_ctx [Context struct]
struct camellial92_ctx [Context struct]
struct camellia256_ctx [Context struct]

Contexts structs. Actually, camellial92_ctx is an alias for camellia256_ctx.

struct camellia_ctx [Context struct]
Alternative struct, for the old Camellia interface.

CAMELLIA_BLOCK_SIZE [Constant|
The CAMELLIA block-size, 16.

CAMELLIA128_KEY_SIZE Constant

CAMELLIA192_KEY_SIZE Constant

CAMELLIA256_KEY_SIZE Constant

[]
Constan
CAMELLIA_MIN_KEY_SIZE [Constant]
[]
[]

CAMELLTA_MAX_KEY_SIZE Constant
CAMELLIA_KEY_SIZE Constant
Default CAMELLIA key size, 32.
void camellial28_set_encrypt_key (struct camellial28_ctx *ctx, [Function]
const uint8_t *key)
void camellial28_set_decrypt_key (struct camellial28_ctx *ctx, [Function]
const uint8_t *key)
void camellial92_set_encrypt_key (struct camellial92_ctx *ctx, [Function]
const uint8-t *key)
void camellial92_set_decrypt_key (struct camellial92_ctx *ctx, [Function]
const uint8-t *key)
void camellia256_set_encrypt_key (struct camellia256_ctx *ctx, [Function]
const uint8-t *key)
void camellia256_set_decrypt_key (struct camellia256_ctx *ctx, [Function]
const uint8_t *key)
void camellia_set_encrypt_key (struct camellia_ctx *ctx, size_t [Function]
length, const uint8_t *key)
void camellia_set_decrypt_key (struct camellia_ctx *ctx, size_t [Function]
length, const uint8_t *key)
Initialize the cipher, for encryption or decryption, respectively.
void camellial28_invert_key (struct camellial28_ctx *dst, const [Function]
struct camellial28_ctx *src)
void camellial92_invert_key (struct camellial92_ctx *dst, const [Function]
struct camellial92_ctx *src)
void camellia256_invert_key (struct camellia256_ctx *dst, const [Function]
struct camellia256_ctx *src)
void camellia_invert_key (struct camellia_ctx *dst, const struct [Function]

camellia_ctx *src)
Given a context src initialized for encryption, initializes the context struct dst for
decryption, using the same key. If the same context struct is passed for both src and
dst, it is converted in place. These functions are mainly useful for applications which
needs to both encrypt and decrypt using the same key.

Chapter 7: Reference 29

void camellial28_crypt (struct camellial28_ctx *ctx, size_t length, [Function]
uint8_t *dst, const uint8_t *src)

void camellial92_crypt (struct camellial92_ctx *ctx, size_t length, [Function]
uint8_t *dst, const uint8_t *src)

void camellia256_crypt (struct camellia256_ctx *ctx, size-t length, [Function]
uint8_t *dst, const uint8_t *src)

void camellia_crypt (struct camellia_ctx *ctx, size_t length, uint§-t [Function]

*dst, const uint8_t *src)
The same function is used for both encryption and decryption. length must be an
integral multiple of the block size. If it is more than one block, the data is processed
in ECB mode. src and dst may be equal, but they must not overlap in any other
way.

7.2.6 CAST128

CAST-128 is a block cipher, specified in RFC 2144. Tt uses a 64 bit (8 octets) block size, and
a key size of 128 bits. It is possible, but discouraged, to use the same algorithm with shorter
keys. Nettle refers to the variant with variable key size as CAST-5. Keys for CAST-5 are
zero padded to 128 bits, and with very short keys, less than 80 bits, encryption also uses
fewer rounds than CAST128. Nettle defines cast128 in ‘<nettle/cast128.h>’.

struct cast128_ctx [Context struct]

CAST128_BLOCK_SIZE [Constant)|
The CAST128 block-size, 8.

CAST128_KEY_SIZE [Constant)|
The CAST128 key size, 16.

CAST5_MIN_KEY_SIZE [Constant|
Minimum CAST5 key size, 5.

CAST5_MAX_KEY_SIZE [Constant|
Maximum CAST5 key size, 16. With 16 octets key (128 bits), CAST-5 is the same
as CAST-128.

void cast128_set_key (struct cast128_ctx *ctx, const uint8_t *key) [Function]

Initialize the cipher. The same function is used for both encryption and decryption.

void cast128_encrypt (struct cast128_ctx *ctx, size_t length, uint8_-t [Function]
*dst, const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void cast128_decrypt (struct cast128_ctx *ctx, size_t length, uint8_-t [Function]
*dst, const uint8_t *src)
Analogous to cast128_encrypt

void castb_set_key (struct cast128_ctx *ctx, size_t length, const [Function]
uint8_t *key)
Initialize the cipher. This variant of the key setup takes the key size as argument.
The same function is used for both encryption and decryption.

Chapter 7: Reference 30

7.2.7 ChaCha

ChaCha is a variant of the stream cipher Salsa20 (see Section 7.2.10 [Salsa20], page 33),
below, also designed by D. J. Bernstein. Nettle defines ChaCha in ‘<nettle/chacha.h>’.

struct chacha_ctx [Context struct]

CHACHA_KEY_SIZE [Constant)]
ChaCha key size, 32.

CHACHA_BLOCK_SIZE [Constant)|
ChaCha block size, 64.

CHACHA_NONCE_SIZE [Constant)|
Size of the nonce, 8.

CHACHA_COUNTER_SIZE [Constant)|
Size of the counter, 8.

void chacha_set_key (struct chacha_ctx *ctx, const uint8_t *key) [Function]
Initialize the cipher. The same function is used for both encryption and decryption.
Before using the cipher, you must also call chacha_set_nonce, see below.

void chacha_set_nonce (struct chacha_ctx *ctx, const uint8-t [Function]
*nonce)
Sets the nonce. It is always of size CHACHA_NONCE_SIZE, 8 octets. This function also
initializes the block counter, setting it to zero.

void chacha_set_counter (struct chacha_ctx *ctx, const uint8_t [Function]
*counter)
Sets the block counter. It is always of size CHACHA_COUNTER_SIZE, 8 octets. This is
rarely needed since chacha_set_nonce initializes the block counter to zero. When it
is still necessary, this function must be called after chacha_set_nonce.

void chacha_crypt (struct chacha_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)
Encrypts or decrypts the data of a message, using ChaCha. When a message is
encrypted using a sequence of calls to chacha_crypt, all but the last call must use a
length that is a multiple of CHACHA_BLOCK_SIZE.

7.2.7.1 32-bit counter variant

While the original paper uses 64-bit counter value, the variant defined in RFC 8439 uses 32-
bit counter value. This variant is particularly useful for see Section 7.4.4 [ChaCha-Poly1305],
page 56 AEAD construction, which supports 12-octet nonces.

CHACHA_NONCE96_SIZE [Constant|
Size of the nonce, 12.

CHACHA_COUNTER32_SIZE [Constant|
Size of the counter, 4.

Chapter 7: Reference 31

void chacha_set_nonce96 (struct chacha_ctx *ctx, const uint8_t [Function]
*nonce)
Sets the nonce. This is similar to the above chacha_set_nonce, but the input is
always of size CHACHA_NONCE96_SIZE, 12 octets.

void chacha_set_counter32 (struct chacha_ctx *ctx, const uint8_t [Function]
*counter)
Sets the block counter. This is similar to the above chacha_set_counter, but the
input is always of size CHACHA_COUNTER32_SIZE, 4 octets.

void chacha_crypt32 (struct chacha_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)
Encrypts or decrypts the data of a message, using ChaCha. This is similar to the
above chacha_crypt, but it assumes the internal counter value is 32-bit long and the
nonce is 96-bit long.

7.2.8 DES

DES is the old Data Encryption Standard, specified by NIST. It uses a block size of 64 bits
(8 octets), and a key size of 56 bits. However, the key bits are distributed over 8 octets,
where the least significant bit of each octet may be used for parity. A common way to use
DES is to generate 8 random octets in some way, then set the least significant bit of each
octet to get odd parity, and initialize DES with the resulting key.

The key size of DES is so small that keys can be found by brute force, using specialized
hardware or lots of ordinary work stations in parallel. One shouldn’t be using plain DES
at all today, if one uses DES at all one should be using “triple DES”, see DES3 below.

DES also has some weak keys. Nettle defines DES in ‘<nettle/des.h>’.

struct des_ctx [Context struct]

DES_BLOCK_SIZE [Constant)]
The DES block-size, 8.

DES_KEY_SIZE [Constant)|
DES key size, 8.

int des_set_key (struct des_ctx *ctx, const uint8_t *key) [Function]
Initialize the cipher. The same function is used for both encryption and decryption.
Parity bits are ignored. Checks for weak keys, returning 1 for good keys and 0 for
weak keys. Applications that don’t care about weak keys can ignore the return value.

void des_encrypt (struct des_ctx *ctx, size_t length, uint8_t *dst, [Function]
const uint8-t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void des_decrypt (struct des_ctx *ctx, size_t length, uint8_t *dst, [Function]
const uint8_t *src)
Analogous to des_encrypt

Chapter 7: Reference 32

int des_check_parity (size-t length, const uint8-t *key); [Function]
Checks that the given key has correct, odd, parity. Returns 1 for correct parity, and
0 for bad parity.

void des_fix_parity (size-t length, uint8_t *dst, const uint8_t [Function]
*src)
Adjusts the parity bits to match DES’s requirements. You need this function if you
have created a random-looking string by a key agreement protocol, and want to use
it as a DES key. dst and src may be equal.

7.2.9 DES3

The inadequate key size of DES has already been mentioned. One way to increase the key
size is to pipe together several DES boxes with independent keys. It turns out that using
two DES ciphers is not as secure as one might think, even if the key size of the combination
is a respectable 112 bits.

The standard way to increase DES’s key size is to use three DES boxes. The mode of
operation is a little peculiar: the middle DES box is wired in the reverse direction. To
encrypt a block with DES3, you encrypt it using the first 56 bits of the key, then decrypt
it using the middle 56 bits of the key, and finally encrypt it again using the last 56 bits of
the key. This is known as “ede” triple-DES, for “encrypt-decrypt-encrypt”.

The “ede” construction provides some backward compatibility, as you get plain single
DES simply by feeding the same key to all three boxes. That should help keeping down the
gate count, and the price, of hardware circuits implementing both plain DES and DES3.

DES3 has a key size of 168 bits, but just like plain DES, useless parity bits are inserted,
so that keys are represented as 24 octets (192 bits). As a 112 bit key is large enough to make
brute force attacks impractical, some applications uses a “two-key” variant of triple-DES.
In this mode, the same key bits are used for the first and the last DES box in the pipe,
while the middle box is keyed independently. The two-key variant is believed to be secure,
i.e. there are no known attacks significantly better than brute force.

Naturally, it’s simple to implement triple-DES on top of Nettle’s DES functions. Nettle
includes an implementation of three-key “ede” triple-DES, it is defined in the same place
as plain DES, ‘<nettle/des.h>’.

struct des3_ctx [Context struct]

DES3_BLOCK_SIZE [Constant|
The DES3 block-size is the same as DES_BLOCK_SIZE, 8.

DES3_KEY_SIZE [Constant|

DES key size, 24.

int des3_set_key (struct des3_ctx *ctx, const uint8-t *key) [Function]
Initialize the cipher. The same function is used for both encryption and decryption.
Parity bits are ignored. Checks for weak keys, returning 1 if all three keys are good
keys, and 0 if one or more key is weak. Applications that don’t care about weak keys
can ignore the return value.

For random-looking strings, you can use des_fix_parity to adjust the parity bits before
calling des3_set_key.

Chapter 7: Reference 33

void des3_encrypt (struct des3_ctx *ctx, size_t length, uint8_t *dst, [Function]
const uint8_t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void des3_decrypt (struct des3_ctx *ctx, size_t length, uint8_t *dst, [Function]
const uint8_t *src)
Analogous to des_encrypt

7.2.10 Salsa20

Salsa20 is a fairly recent stream cipher designed by D. J. Bernstein. It is built on the
observation that a cryptographic hash function can be used for encryption: Form the hash
input from the secret key and a counter, xor the hash output and the first block of the
plaintext, then increment the counter to process the next block (similar to CTR mode, see
Section 7.3.2 [CTR], page 38). Bernstein defined an encryption algorithm, Snuffle, in this
way to ridicule United States export restrictions which treated hash functions as nice and
harmless, but ciphers as dangerous munitions.

Salsa20 uses the same idea, but with a new specialized hash function to mix key, block
counter, and a couple of constants. It’s also designed for speed; on x86_64, it is currently
the fastest cipher offered by nettle. It uses a block size of 512 bits (64 octets) and there are
two specified key sizes, 128 and 256 bits (16 and 32 octets).

Caution: The hash function used in Salsa20 is not directly applicable for use as a general
hash function. It’s not collision resistant if arbitrary inputs are allowed, and furthermore,
the input and output is of fixed size.

When using Salsa20 to process a message, one specifies both a key and a nonce, the
latter playing a similar role to the initialization vector (IV) used with CBC or CTR mode.
One can use the same key for several messages, provided one uses a unique random iv for
each message. The iv is 64 bits (8 octets). The block counter is initialized to zero for each
message, and is also 64 bits (8 octets). Nettle defines Salsa20 in ‘<nettle/salsa20.h>’.

struct salsa20_ctx [Context struct]

SALSA20_128_KEY_SIZE [Constant|

SALSA20_256_KEY_SIZE [Constant|
The two supported key sizes, 16 and 32 octets.

SALSA20_KEY_SIZE [Constant)|
Recommended key size, 32.

SALSA20_BLOCK_SIZE [Constant|
Salsa20 block size, 64.

SALSA20_NONCE_SIZE [Constant)|
Size of the nonce, 8.

void salsa20_128_set_key (struct salsa20_ctx *ctx, const uint8_t [Function]

*key)
void salsa20_256_set_key (struct salsa20_ctx *ctx, const uint8_t [Function]

*key)

Chapter 7: Reference 34

void salsa20_set_key (struct salsa20_ctx *ctx, size_t length, const [Function]
uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.
salsa20_128_set_key and salsa20_128_set_key use a fix key size each, 16 and
32 octets, respectively. The function salsa20_set_key is provided for backwards
compatibility, and the length argument must be either 16 or 32. Before using the
cipher, you must also call salsa20_set_nonce, see below.

void salsa20_set_nonce (struct salsa20_ctx *ctx, const uint8_t [Function]
*nonce)
Sets the nonce. It is always of size SALSA20_NONCE_SIZE, 8 octets. This function also
initializes the block counter, setting it to zero.

void salsa20_crypt (struct salsa20_ctx *ctx, size_t length, uint8_t [Function]
*dst, const uint8_t *src)
Encrypts or decrypts the data of a message, using salsa20. When a message is en-
crypted using a sequence of calls to salsa20_crypt, all but the last call must use a
length that is a multiple of SALSA20_BLOCK_SIZE.

The full salsa20 cipher uses 20 rounds of mixing. Variants of Salsa20 with
fewer rounds are possible, and the 12-round variant is specified by eSTREAM, see
https://www.ecrypt.eu.org/stream/finallist.html. Nettle calls this variant

salsa20r12. It uses the same context struct and key setup as the full salsa20 cipher, but
a separate function for encryption and decryption.

void salsa20ri2_crypt (struct salsa20_ctx *ctx, size_t length, [Function]
uint8_t *dst, const uint8_t *src)
Encrypts or decrypts the data of a message, using salsa20 reduced to 12 rounds.

7.2.11 Serpent

SERPENT is one of the AES finalists, designed by Ross Anderson, Eli Biham and Lars
Knudsen. Thus, the interface and properties are similar to AES’. One peculiarity is that it
is quite pointless to use it with anything but the maximum key size, smaller keys are just
padded to larger ones. Nettle defines SERPENT in ‘<nettle/serpent.h>’.

struct serpent_ctx [Context struct]
SERPENT_BLOCK_SIZE [Constant)|
The SERPENT block-size, 16.

SERPENT_MIN_KEY_SIZE [Constant)|
Minimum SERPENT key size, 16.

SERPENT_MAX_KEY_SIZE [Constant|
Maximum SERPENT key size, 32.

SERPENT_KEY_SIZE [Constant|
Default SERPENT key size, 32.

https://www.ecrypt.eu.org/stream/finallist.html

Chapter 7: Reference 35

void serpent_set_key (struct serpent_ctx *ctx, size_t length, const [Function]
uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

void serpent_encrypt (struct serpent_ctx *ctx, size_t length, uint8_-t [Function]
*dst, const uint8_t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void serpent_decrypt (struct serpent_ctx *ctx, size_t length, uint8_-t [Function]
*dst, const uint8_t *src)
Analogous to serpent_encrypt

7.2.12 Twofish

Another AES finalist, this one designed by Bruce Schneier and others. Nettle defines it in
‘<nettle/twofish.h>’.

struct twofish_ctx [Context struct]

TWOFISH_BLOCK_SIZE [Constant)]
The TWOFISH block-size, 16.

TWOFISH_MIN_KEY_SIZE [Constant|
Minimum TWOFISH key size, 16.

TWOFISH_MAX_KEY_SIZE [Constant|
Maximum TWOFISH key size, 32.

TWOFISH_KEY_SIZE [Constant)|
Default TWOFISH key size, 32.

void twofish_set_key (struct twofish_ctx *ctx, size_t length, const [Function]
uint8_t *key)
Initialize the cipher. The same function is used for both encryption and decryption.

void twofish_encrypt (struct twofish_ctx *ctx, size_t length, uint8_-t [Function]
*dst, const uint8_t *src)
Encryption function. length must be an integral multiple of the block size. If it is
more than one block, the data is processed in ECB mode. src and dst may be equal,
but they must not overlap in any other way.

void twofish_decrypt (struct twofish_ctx *ctx, size_t length, uint8_-t [Function]
*dst, const uint8-t *src)
Analogous to twofish_encrypt

7.2.13 The struct nettle_cipher abstraction

Nettle includes a struct including information about some of the more regular cipher func-
tions. It can be useful for applications that need a simple way to handle various algorithms.
Nettle defines these structs in ‘<nettle/nettle-meta.h>’.

Chapter 7: Reference 36

struct nettle_cipher name context_size block_size key_size [Meta struct]
set_encrypt_key set_decrypt_key encrypt decrypt
The last four attributes are function pointers, of types nettle_set_key_func * and
nettle_cipher_func *. The first argument to these functions is a const void *
pointer to a context struct, which is of size context_size.

Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct
Constant Struct

struct nettle_cipher nettle_aes128 []
struct nettle_cipher nettle_aes192 []
struct nettle_cipher nettle_aes256 []
struct nettle_cipher nettle_arctwo40 []
struct nettle_cipher nettle_arctwo64 []
struct nettle_cipher nettle_arctwol28 []
struct nettle_cipher nettle_arctwo_gutmanni28 []
struct nettle_cipher nettle_arcfour128 [Constant Struct]
struct nettle_cipher nettle_camellial28 [Constant Struct]
struct nettle_cipher nettle_camellial92 [Constant Struct]
struct nettle_cipher nettle_camellia256 [Constant Struct]
struct nettle_cipher nettle_cast128 [Constant Struct]
struct nettle_cipher nettle_serpent128 [Constant Struct]
struct nettle_cipher nettle_serpent192 [Constant Struct]
struct nettle_cipher nettle_serpent256 [Constant Struct]
struct nettle_cipher nettle_twofish128 [Constant Struct]
struct nettle_cipher nettle_twofish192 [Constant Struct]
struct nettle_cipher nettle_twofish256 [Constant Struct]
Nettle includes such structs for all the regular ciphers, i.e. ones without weak keys or
other oddities.

Nettle also exports a list of all these ciphers without weak keys or other oddities.

const struct nettle_cipher ** nettle_get_ciphers (void) [Function]
Returns a NULL-terminated list of pointers to supported block ciphers. This list can
be used to dynamically enumerate or search the supported algorithms.

nettle_ciphers [Macro]
A macro expanding to a call to nettle_get_ciphers. In earlier versions, this was not a
macro but the actual array of pointers.

7.3 Cipher modes

Cipher modes of operation specifies the procedure to use when encrypting a message that
is larger than the cipher’s block size. As explained in See Section 7.2 [Cipher functions],
page 20, splitting the message into blocks and processing them independently with the block
cipher (Electronic Code Book mode, ECB), leaks information.

Besides ECB, Nettle provides several other modes of operation: Cipher Block Chaining
(CBC), Counter mode (CTR), Cipher Feedback (CFB and CFB8), XEX-based tweaked-
codebook mode with ciphertext stealing (XTS) and a couple of AEAD modes (see Section 7.4
[Authenticated encryption], page 44). CBC is widely used, but there are a few subtle issues
of information leakage, see, e.g., SSH CBC vulnerability. Today, CTR is usually preferred
over CBC.

https://www.kb.cert.org/vuls/id/958563

Chapter 7: Reference 37

Modes like CBC, CTR, CFB and CFBS8 provide no message authentication, and should
always be used together with a MAC (see Section 7.5 [Keyed hash functions], page 60) or
signature to authenticate the message.

7.3.1 Cipher Block Chaining

When using CBC mode, plaintext blocks are not encrypted independently of each other,
like in Electronic Cook Book mode. Instead, when encrypting a block in CBC mode, the
previous ciphertext block is XORed with the plaintext before it is fed to the block cipher.
When encrypting the first block, a random block called an IV, or Initialization Vector, is
used as the “previous ciphertext block”. The IV should be chosen randomly, but it need
not be kept secret, and can even be transmitted in the clear together with the encrypted
data.

In symbols, if E_k is the encryption function of a block cipher, and IV is the initialization
vector, then n plaintext blocks M_1,. .. M_n are transformed into n ciphertext blocks C_1,. . .
C_n as follows:

C_1 = E_k(IV XOR M_1)
C_2 E_k(C_1 XOR M_2)

C_n = E_k(C_(n-1) XOR M_n)

Nettle provides two main functions for applying a block cipher in Cipher Block Chaining
(CBC) mode, one for encryption and one for decryption. These functions uses const void
* to pass cipher contexts around. The CBC interface is defined in ‘<nettle/cbc.h>’.

void cbc_encrypt (const void *ctx, nettle_cipher_func *f, size_t [Function]
block_size, uint8_t *iv, size_t length, uint8_t *dst, const uint8_t *src)
void cbc_decrypt (const void *ctx, nettle_cipher_func *f, size_t [Function]

block_size, uint8_t *iv, size_t length, uint8_t *dst, const uint8_-t *src)
Applies the encryption or decryption function f in CBC mode. The final ciphertext
block processed is copied into iv before returning, so that a large message can be
processed by a sequence of calls to cbc_encrypt. The function f is of type

void f (const void *ctx, size_t length, uint8_t dst, const uint8_t *src),

and the cbc_encrypt and cbc_decrypt functions pass their argument ctx on to f.

7.3.1.1 Utility macros

There are also some macros to help use these functions correctly.

CBC_CTX (context_type, block_size) [Macro]
Expands to
{
context_type ctx;
uint8_t iv[block_sizel;

¥

It can be used to define a CBC context struct, either directly,

Chapter 7: Reference 38

struct CBC_CTX(struct aes_ctx, AES_BLOCK_SIZE) ctx;
or to give it a struct tag,
struct aes_cbc_ctx CBC_CTX (struct aes_ctx, AES_BLOCK_SIZE);

CBC_SET_IV (ctx, iv) [Macro]
First argument is a pointer to a context struct as defined by CBC_CTX, and the second
is a pointer to an Initialization Vector (IV) that is copied into that context.

CBC_ENCRYPT (ctx, f, length, dst, src) [Macro]

CBC_DECRYPT (ctx, f, length, dst, src) [Macro]
A simpler way to invoke cbc_encrypt and cbc_decrypt. The first argument is a
pointer to a context struct as defined by CBC_CTX, and the second argument is an
encryption or decryption function following Nettle’s conventions. The last three ar-
guments define the source and destination area for the operation.

These macros use some tricks to make the compiler display a warning if the types of f and
ctx don’t match, e.g. if you try to use an struct aes_ctx context with the des_encrypt
function.

7.3.1.2 Cipher-specific functions

Encryption in CBC mode (but not decryption!) is inherently serial. It can pass only one
block at a time to the block cipher’s encrypt function. Optimizations to process several
blocks in parallel can’t be applied, and on platforms where the underlying cipher is fast, per-
function-call overhead, e.g., loading subkeys from memory into registers, can be significant.
Depending on platform and cipher used, cbc_encrypt can be considerably slower than both
cbc_decrypt and CTR mode. The second reason for poor performance can be addressed by
having a combined CBC and encrypt function, for ciphers where the overhead is significant.

Nettle currently includes such special functions only for AES.

void cbc_aesl28_encrypt (const struct aes128_ctx *ctx, uint8_t *iv, [Function]
size_t length, uint8_t *dst, const uint8_t *src)

void cbc_aesl192_encrypt (const struct aes192_ctx *ctx, uint8_t *iv, [Function]
size_t length, uint8_-t *dst, const uint8_t *src)

void cbc_aes256_encrypt (const struct aes256_ctx *ctx, uint8_t *iv, [Function]

size_t length, uint8_t *dst, const uint8_t *src)
Calling cbc_aes128_encrypt(ctx, iv, length, dst, src) does the same thing as
calling cbc_encrypt(ctx, aes128_encrypt, AES_BLOCK_SIZE, iv, length, dst,
src), but is more efficient on certain platforms.

7.3.2 Counter mode

Counter mode (CTR) uses the block cipher as a keyed pseudo-random generator. The
output of the generator is XORed with the data to be encrypted. It can be understood as
a way to transform a block cipher to a stream cipher.

The message is divided into n blocks M_1,... M_n, where M_n is of size m which may be
smaller than the block size. Except for the last block, all the message blocks must be of
size equal to the cipher’s block size.

If E_k is the encryption function of a block cipher, IC is the initial counter, then the n
plaintext blocks are transformed into n ciphertext blocks C_1,... C_n as follows:

Chapter 7: Reference 39

E_k(IC) XOR M_1
= E_k(IC + 1) XOR M_2

N =
|

C_(n-1) = E_k(IC + n - 2) XOR M_(n-1)
C.n=ELk(IC+n-1) [1..m] XOR M_n

The IC is the initial value for the counter, it plays a similar role as the IV for CBC. When
adding, IC + x, IC is interpreted as an integer, in network byte order. For the last block,
E_k(IC+n - 1) [1..m] means that the cipher output is truncated to m bytes.

void ctr_crypt (const void *ctx, nettle_cipher_func *f, size_t [Function]

block_size, uint8_t *ctr, size_t length, uint8_t *dst, const uint8_t *src)

Applies the encryption function f in CTR mode. Note that for CTR mode, encryption

and decryption is the same operation, and hence f should always be the encryption
function for the underlying block cipher.

When a message is encrypted using a sequence of calls to ctr_crypt, all but the last
call must use a length that is a multiple of the block size.

Like for CBC, there are also a couple of helper macros.

CTR_CTX (context_type, block_size) [Macro]
Expands to

{
context_type ctx;
uint8_t ctr[block_size];
}

CTR_SET_COUNTER (ctx, iv) [Macro]
First argument is a pointer to a context struct as defined by CTR_CTX, and the second
is a pointer to an initial counter that is copied into that context.

CTR_CRYPT (ctx, f, length, dst, src) [Macro]
A simpler way to invoke ctr_crypt. The first argument is a pointer to a context struct
as defined by CTR_CTX, and the second argument is an encryption function following
Nettle’s conventions. The last three arguments define the source and destination area
for the operation.

7.3.3 Cipher Feedback mode
Cipher Feedback mode (CFB) and Cipher Feedback 8-bit mode (CFB8) being close relatives
to both CBC mode and CTR mode borrow some characteristics from stream ciphers.

For CFB the message is divided into n blocks M_1,. .. M_n, where M_n is of size m which
may be smaller than the block size. Except for the last block, all the message blocks must
be of size equal to the cipher’s block size.

If E_k is the encryption function of a block cipher, IV is the initialization vector, then
the n plaintext blocks are transformed into n ciphertext blocks C_1,... C_n as follows:

Chapter 7: Reference 40

E_k(IV) XOR M_1
= E_k(C_1) XOR M_2

N =
|

C_(n-1) = E_k(C_(n - 2)) XOR M_(n-1)
C.n = Ek(C_(n - 1)) [1..m] XOR M_n
Cipher Feedback 8-bit mode (CFBS8) transforms block cipher into a stream cipher. The
message is encrypted byte after byte, not requiring any padding.
If E_k is the encryption function of a block cipher, b is E_k block size, IV is the initial-
ization vector, then the n plaintext bytes are transformed into n ciphertext bytes C_1,. . .
C_n as follows:

I.1 =1V

C_1 =E_k(I_1) [1..8] XOR M_1
I.2=1I1109..p] <« 8] C_1

C_2 = E_k(I_2) [1..8] XOR M_2

I_(n-1) = I_(n-2) [9..b] << 8 | C_(n-2)

C_(n-1) = E_k(I_(n-1)) [1..8] XOR M_(n-1)
I.n=1I_1(-1) [9..b] << 8 | C_(n-1)
C.n = E_k(I_n) [1..8] XOR M_n

Nettle’s includes functions for applying a block cipher in Cipher Feedback (CFB) and
Cipher Feedback 8-bit (CFB8) modes. These functions uses void * to pass cipher contexts
around.

void cfb_encrypt (const void *ctx, nettle_cipher_func *f, size_t [Function]
block_size, uint8_t *iv, size_t length, uint8_t *dst, const uint8_t *src)
void cfb_decrypt (const void *ctx, nettle_cipher_func *f, size_t [Function]

block_size, uint8_t *iv, size_t length, uint8_t *dst, const uint8_-t *src)
Applies the encryption or decryption function f in CFB mode. The final ciphertext
block processed is copied into iv before returning, so that a large message can be
processed by a sequence of calls to cfb_encrypt. Note that for CFB mode internally
uses encryption only function and hence f should always be the encryption function
for the underlying block cipher.

When a message is encrypted using a sequence of calls to cfb_encrypt, all but the
last call must use a length that is a multiple of the block size.

void cfb8_encrypt (const void *ctx, nettle_cipher_func *f, size_t [Function]
block_size, uint8_t *iv, size_t length, uint8_t *dst, const uint8_t *src)
void cfb8_decrypt (const void *ctx, nettle_cipher_func *f, size_t [Function]

block_size, uint8_t *iv, size_t length, uint8_t *dst, const uint8_t *src)
Applies the encryption or decryption function f in CFB8 mode. The final IV block
processed is copied into iv before returning, so that a large message can be processed
by a sequence of calls to cfb8_encrypt. Note that for CFB8 mode internally uses

Chapter 7: Reference 41

encryption only function and hence f should always be the encryption function for
the underlying block cipher.

Like for CBC, there are also a couple of helper macros.

CFB_CTX (context_type, block_size) [Macro]
Expands to

{
context_type ctx;
uint8_t iv[block_size];

¥

CFB_SET_IV(ctx, iv) [Macro]
First argument is a pointer to a context struct as defined by CFB_CTX, and the second
is a pointer to an initialization vector that is copied into that context.

CFB_ENCRYPT (ctx, f, length, dst, src) [Macro]
A simpler way to invoke cfb_encrypt. The first argument is a pointer to a context
struct as defined by CFB_CTX, and the second argument is an encryption function
following Nettle’s conventions. The last three arguments define the source and desti-
nation area for the operation.

CFB_DECRYPT (ctx, f, length, dst, src) [Macro]
A simpler way to invoke cfb_decrypt. The first argument is a pointer to a context
struct as defined by CFB_CTX, and the second argument is an encryption function
following Nettle’s conventions. The last three arguments define the source and desti-
nation area for the operation.

CFB8_CTX (context_type, block_size) [Macro]
Expands to

{
context_type ctx;
uint8_t iv[block_sizel;

}

CFB8_SET_IV (ctx, iv) [Macro]
First argument is a pointer to a context struct as defined by CFB8_CTX, and the second
is a pointer to an initialization vector that is copied into that context.

CFB8_ENCRYPT (ctx, f, length, dst, src) [Macro]
A simpler way to invoke cfb8_encrypt. The first argument is a pointer to a context
struct as defined by CFB8_CTX, and the second argument is an encryption function
following Nettle’s conventions. The last three arguments define the source and desti-
nation area for the operation.

CFB8_DECRYPT (ctx, f, length, dst, src) [Macro]
A simpler way to invoke cfb8_decrypt. The first argument is a pointer to a context
struct as defined by CFB8_CTX, and the second argument is an encryption function
following Nettle’s conventions. The last three arguments define the source and desti-
nation area for the operation.

Chapter 7: Reference 42

7.3.4 XEX-based tweaked-codebook mode with ciphertext stealing

XEX-based tweaked-codebook mode with ciphertext stealing (XTS) is a block mode like
(CBC) but tweaked to be able to encrypt partial blocks via a technique called ciphertext
stealing, where the last complete block of ciphertext is split and part returned as the last
block and part used as plaintext for the second to last block. This mode is principally used
to encrypt data at rest where it is not possible to store additional metadata or blocks larger
than the plain text. The most common usage is for disk encryption. Due to the fact that
ciphertext expansion is not possible, data is not authenticated. This mode should not be
used where authentication is critical.

The message is divided into n blocks M_1,... M_n, where M_n is of size m which may be
smaller than the block size. XTS always uses a fixed blocksize of 128 bit (16 bytes) length.

Unlike other modes, the key is double the size of that for the used cipher mode (for
example 256bit for AES-128 and 512bit for AES-256).
XTS encryption mode operates given:

e A multiplication by a primitive element alpha. MUL a~j here represents the
multiplication, where j is the power of alpha, and the input value is converted
into a 16 bytes array a_0[k], k =0,1,..,15. The multiplication is calculated as
a_(j+1)[0] = (2(a_j[0] mod 128)) XOR (135 * floor(a_j[15]1/128) a_(j+1) [k]
= (2(a_j[kx] mod 128)) XOR (floor(a_j[k-1]1/128), k = 1,2,..15 Note that this
operation is practically a 1 bit left shift operation with carry propagating from one
byte to the next, and if the last bit shift results in a carry the decimal value 135 is
XORed into the first byte.

e The encryption key is provided as the Key = K1 | K2, where | denotes string concate-
nation. E_k1 is the encryption function of the block cipher using K1 as the key, and
E_k2 is the same encryption function using K2

e A 128 bit tweak value is provided as input and is denoted as IV
The n plaintext blocks are transformed into n ciphertext blocks C_1,... C_n as follows.

For a plaintext length that is a perfect multiple of the XT'S block size:
T_1 = E_k2(IV)

C_1 = E_k1(P_1 XOR T_1) XOR T_1
T_n = T_(n-1) MUL a
C_.n = E_k1(P_n XOR T_n) XOR T_n

For any other plaintext lengths:

T_1 = E_k2(IV)
C_1 =E_k1(P_1 XOR T_1) X0OR T_1
T_(n-2) = T_(n-3) MUL a

C_(n-2)

E_k1(P_(n-2) XOR T_(n-2)) XOR T_(n-2)

Chapter 7: Reference 43

T_(n-1) = T_(n-2) MUL a
CC_(n-1) = E_k1(P_(n-1) XOR T_(n-1)) XOR T_(n-1)

T n =T_(n-1) MUL a
PP = [1..m]Pn | [m+1..128]CC_(n-1)
C_(n-1) = E_k1(PP XOR T_n) XOR T_n

C_n = [1..m]CC_(n-1)

7.3.4.1 General (XTS) interface.

The two general functions to encrypt and decrypt using the XTS block cipher mode are the
following:

void xts_encrypt_message (const void *enc_ctx, const void [Function]
*twk_ctx, nettle_cipher_func *encf, const uint8_t *tweak, size_t length,
uint8_t *dst, const uint8_t *src)
void xts_decrypt_message (const void *dec_ctx, const void [Function]
*twk_ctx, nettle_cipher_func *decf, nettle_cipher_func *encf, const uint8_t
*tweak, size_t length, uint8_-t *dst, const uint8_t *src)
Applies the encryption function encf or the decryption function decf in XTS mode.
At least one block (16 bytes) worth of data must be available therefore specifying a
length less than 16 bytes is illegal.

The functions encf decf are of type
void f (const void *ctx, size_t length, uint8_t *dst, const uint8_t *src),

and the xts_encrypt_message and xts_decrypt_message functions pass their ar-
guments enc_ctx, twk_ctx and dec_ctx to the functions encf, decf as ctx.

7.3.4.2 XTS-AES interface

The AES XTS functions provide an API for using the XTS mode with the AES block ciphers.
The parameters all have the same meaning as the general interface, except that the enc_ctx,
dec_ctx, twk_ctx, encf and decf are replaced with an AES context structure called ctx, and a
appropriate set-key function must be called before using any of the encryption or decryption
functions in this interface.

struct xts_aesl128_key [Context struct]
Holds state corresponding to the AES-128 block cipher.

struct xts_aes256_key [Context struct]
Holds state corresponding to the AES-256 block cipher.

void xts_aesl128_set_encrypt_key (struct xts_aesl28_key *ctx, [Function]
const uint8-t *key)

void xts_aes256_set_encrypt_key (struct xts_aes256_key *ctx, [Function]
const uint8-t *key)

void xts_aesl128_set_decrypt_key (struct xts_aes128_key *ctx, [Function]

const uint8-t *key)

Chapter 7: Reference 44

void xts_aes256_set_decrypt_key (struct xts_aes256_key *ctx, [Function]
const uint8_t *key)
Initializes the encryption or decryption key for the AES block cipher. The length of
the key must be double the size of the key for the corresponding cipher (256 bits for
AES-128 and 512 bits for AES-256). One of these functions must be called before
any of the other functions.

void xts_aesl128_encrypt_message(struct xts_aesl128_key *ctx, [Function]
uint8_t *tweak, size_t length, uint8_t *dst, const uint8_t *src)

void xts_aes256_encrypt_message(struct xts_aes256_key *ctx, [Function]
uint8_t *tweak, size_t length, uint8_t *dst, const uint8_t *src)

void xts_aes128_decrypt_message(struct xts_aesl28_key *ctx, [Function]
uint8_t *tweak, size_t length, uint8_t *dst, const uint8_t *src)

void xts_aes256_decrypt_message(struct xts_aes256_key *ctx, [Function]

uint8_t *tweak, size_t length, uint8_t *dst, const uint8_t *src)
These are identical to xts_encrypt_message and xts_decrypt_message, except that
enc_ctx, dec_ctx, twk_ctx, encf and decf are replaced by the ctx context structure.

7.4 Authenticated encryption with associated data

Since there are some subtle design choices to be made when combining a block cipher
mode with out authentication with a MAC. In recent years, several constructions that
combine encryption and authentication have been defined. These constructions typically
also have an additional input, the “associated data”, which is authenticated but not included
with the message. A simple example is an implicit message number which is available at
both sender and receiver, and which needs authentication in order to detect deletions or
replay of messages. This family of building blocks are therefore called AEAD, Authenticated
encryption with associated data.

The aim is to provide building blocks that it is easier for designers of protocols and
applications to use correctly. There is also some potential for improved performance, if
encryption and authentication can be done in a single step, although that potential is not
realized for the constructions currently supported by Nettle.

For encryption, the inputs are:
e The key, which can be used for many messages.
e A nonce, which must be unique for each message using the same key.
e Additional associated data to be authenticated, but not included in the message.

e The cleartext message to be encrypted.

The outputs are:
e The ciphertext, of the same size as the cleartext.
e A digest or “authentication tag”.
Decryption works the same, but with cleartext and ciphertext interchanged. All currently

supported AEAD algorithms always use the encryption function of the underlying block
cipher, for both encryption and decryption.

Usually, the authentication tag should be appended at the end of the ciphertext, pro-
ducing an encrypted message which is slightly longer than the cleartext. However, Nettle’s

Chapter 7: Reference 45

low level AEAD functions produce the authentication tag as a separate output for both
encryption and decryption.

Both associated data and the message data (cleartext or ciphertext) can be processed
incrementally. In general, all associated data must be processed before the message data,
and all calls but the last one must use a length that is a multiple of the block size, although
some AEAD may implement more liberal conventions. The CCM mode is a bit special in
that it requires the message lengths up front, other AEAD constructions don’t have this
restriction.

The supported AEAD constructions are Galois/Counter mode (GCM), EAX, ChaCha-~
Poly1305, and Counter with CBC-MAC (CCM). There are some weaknesses in GCM authen-
tication, see https://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments
/CWC-GCM/Ferguson2.pdf. CCM and EAX use the same building blocks, but the EAX
design is cleaner and avoids a couple of inconveniences of CCM. Therefore, EAX seems like
a good conservative choice. The more recent ChaCha-Poly1305 may also be an attractive
but more adventurous alternative, in particular if performance is important.

7.4.1 EAX

The EAX mode is an AEAD mode which combines CTR mode encryption, See Section 7.3.2
[CTR], page 38, with a message authentication based on CBC, See Section 7.3.1 [CBC],
page 37. The implementation in Nettle is restricted to ciphers with a block size of 128 bits
(16 octets). EAX was defined as a reaction to the CCM mode, See Section 7.4.3 [CCM],
page 52, which uses the same primitives but has some undesirable and inelegant properties.

EAX supports arbitrary nonce size; it’s even possible to use an empty nonce in case only
a single message is encrypted for each key.

Nettle’s support for EAX consists of a low-level general interface, some convenience
macros, and specific functions for EAX using AES-128 as the underlying cipher. These
interfaces are defined in ‘<nettle/eax.h>’

7.4.1.1 General EAX interface

struct eax_key [Context struct]
EAX state which depends only on the key, but not on the nonce or the message.

struct eax_ctx [Context struct]
Holds state corresponding to a particular message.

EAX_BLOCK_SIZE [Constant|
EAX’s block size, 16.

EAX_DIGEST_SIZE [Constant)|
Size of the EAX digest, also 16.

void eax_set_key (struct eax_key *key, const void *cipher, [Function]
nettle_cipher_func *f)
Initializes key. cipher gives a context struct for the underlying cipher, which must
have been previously initialized for encryption, and f is the encryption function.

https://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
https://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf

Chapter 7: Reference 46

void eax_set_nonce (struct eax_ctx *eax, const struct eax_key *key, [Function]
const void *cipher, nettle_cipher_func *f, size_t nonce_length, const
uint8_t *nonce)
Initializes ctx for processing a new message, using the given nonce.

void eax_update (struct eax_ctx *eax, const struct eax_key *key, const [Function]
void *cipher, nettle_cipher_func *f, size_t data_length, const uint8_t
*data)

Process associated data for authentication. All but the last call for each message
must use a length that is a multiple of the block size. Unlike many other AEAD
constructions, for EAX it’s not necessary to complete the processing of all associated
data before encrypting or decrypting the message data.

void eax_encrypt (struct eax_ctx *eax, const struct eax_key *key, [Function]
const void *cipher, nettle_cipher_func *f, size_t length, uint8_t *dst, const
uint8-t *src)
void eax_decrypt (struct eax_ctx *eax, const struct eax_key *key, [Function]
const void *cipher, nettle_cipher_func *f, size_t length, uint8_t *dst, const
uint8_t *src)
Encrypts or decrypts the data of a message. cipher is the context struct for the
underlying cipher and f is the encryption function. All but the last call for each
message must use a length that is a multiple of the block size.

void eax_digest (struct eax_ctx *eax, const struct eax_key *key, const [Function]
void *cipher, nettle_cipher_func *f, size_t length, uint8_t *digest);
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. If length is smaller than EAX_DIGEST_SIZE,
only the first length octets of the digest are written.

7.4.1.2 EAX helper macros
The following macros are defined.
EAX_CTX (context_type) [Macro]

This defines an all-in-one context struct, including the context of the underlying cipher
and all EAX state. It expands to

{
struct eax_key key;
struct eax_ctx eax;
context_type cipher;
b

For all these macros, ctx, is a context struct as defined by EAX_CTX, and encrypt is the
encryption function of the underlying cipher.

EAX_SET_KEY (ctx, set_key, encrypt, key) [Macro]
set_key is the function for setting the encryption key for the underlying cipher, and
key is the key.

EAX_SET_NONCE (ctx, encrypt, length, nonce) [Macro]
Sets the nonce to be used for the message.

Chapter 7: Reference 47

EAX_UPDATE (ctx, encrypt, length, data) [Macro]
Process associated data for authentication.

EAX_ENCRYPT (ctx, encrypt, length, dst, src) [Macro]

EAX_DECRYPT (ctx, encrypt, length, dst, src) [Macro]

Process message data for encryption or decryption.

EAX_DIGEST (ctx, encrypt, length, digest) [Macro]
Extract the authentication tag for the message.

7.4.1.3 EAX-AES128 interface
The following functions implement EAX using AES-128 as the underlying cipher.

struct eax_aesl128_ctx [Context struct]
The context struct, defined using EAX_CTX.

void eax_aesl128_set_key (struct eax_aesl28_ctx *ctx, const uint8_t [Function]
*key)
Initializes ctx using the given key.

void eax_aesl128_set_nonce (struct eax_aesl28_ctx *ctx, size_t [Function]
length, const uint8_t *iv)
Initializes the per-message state, using the given nonce.

void eax_aes128_update (struct eax_aesl28_ctx *ctx, size_t length, [Function]
const uint8_t *data)
Process associated data for authentication. All but the last call for each message must
use a length that is a multiple of the block size.

void eax_aes128_encrypt (struct eax_aesl28_ctx *ctx, size_t length, [Function]
uint8_t *dst, const uint8_t *src)
void eax_aesl128_decrypt (struct eax_aesl28_ctx *ctx, size_t length, [Function]

uint8_t *dst, const uint8_t *src)
Encrypts or decrypts the data of a message. All but the last call for each message
must use a length that is a multiple of the block size.

void eax_aes128_digest (struct eax-aes128_ctx *ctx, size_-t length, [Function]
uint8_t *digest);
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. If length is smaller than EAX_DIGEST_SIZE,
only the first length octets of the digest are written.

7.4.2 Galois counter mode

Galois counter mode is an AEAD constructions combining counter mode with message
authentication based on universal hashing. The main objective of the design is to provide
high performance for hardware implementations, where other popular MAC algorithms (see
Section 7.5 [Keyed hash functions|, page 60) become a bottleneck for high-speed hardware
implementations. It was proposed by David A. McGrew and John Viega in 2005, and
recommended by NIST in 2007, NIST Special Publication 800-38D. It is constructed on
top of a block cipher which must have a block size of 128 bits.

https://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

Chapter 7: Reference 48

The authentication in GCM has some known weaknesses, see https://csrc.nist.gov
/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf. In particular,
don’t use GCM with short authentication tags.

Nettle’s support for GCM consists of a low-level general interface, some convenience
macros, and specific functions for GCM using AES or Camellia as the underlying cipher.
These interfaces are defined in ‘<nettle/gcm.h>’

7.4.2.1 General GCM interface

struct gcm_key [Context struct]
Message independent hash sub-key, and related tables.

struct gecm_ctx [Context struct]
Holds state corresponding to a particular message.

GCM_BLOCK_SIZE [Constant|
GCM’s block size, 16.

GCM_DIGEST_SIZE [Constant|
Size of the GCM digest, also 16.

GCM_IV_SIZE [Constant|
Recommended size of the IV, 12. Arbitrary sizes are allowed.

void gcm_set_key (struct gem_key *key, const void *cipher, [Function]
nettle_cipher_func *f)
Initializes key. cipher gives a context struct for the underlying cipher, which must
have been previously initialized for encryption, and f is the encryption function.

void gcm_set_iv (struct gem_ctx *ctx, const struct gecm_key *key, [Function]
size_t length, const uint8_t *iv)
Initializes ctx using the given IV. The key argument is actually needed only if length
differs from GCM_IV_SIZE.

void gcm_update (struct gem_ctx *ctx, const struct gecm_key *key, [Function]
size_t length, const uint8_t *data)
Provides associated data to be authenticated. If used, must be called before gcm_
encrypt or gcm_decrypt. All but the last call for each message must use a length
that is a multiple of the block size.

void gecm_encrypt (struct gem_ctx *ctx, const struct gem_key *key, [Function]
const void *cipher, nettle_cipher_func *f, size_t length, uint8_t *dst, const
uint8_t *src)
void gem_decrypt (struct gem_ctx *ctx, const struct gem_key *key, [Function]
const void *cipher, nettle_cipher_func *f, size_t length, uint8_t *dst, const
uint8-t *src)
Encrypts or decrypts the data of a message. cipher is the context struct for the
underlying cipher and f is the encryption function. All but the last call for each
message must use a length that is a multiple of the block size.

https://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf
https://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/CWC-GCM/Ferguson2.pdf

Chapter 7: Reference 49

void gem_digest (struct gem_ctx *ctx, const struct gecm_key *key, [Function]
const void *cipher, nettle_cipher_func *f, size_t length, uint8_t *digest)
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. It’s strongly recommended that length is GCM_
DIGEST_SIZE, but if you provide a smaller value, only the first length octets of the
digest are written.

To encrypt a message using GCM, first initialize a context for the underlying block cipher
with a key to use for encryption. Then call the above functions in the following order: gem_
set_key, gcm_set_iv, gcm_update, gcm_encrypt, gem_digest. The decryption procedure
is analogous, just calling gcm_decrypt instead of gcm_encrypt (note that GCM decryption
still uses the encryption function of the underlying block cipher). To process a new message,
using the same key, call gcm_set_iv with a new iv.

7.4.2.2 GCM helper macros
The following macros are defined.

GCM_CTX (context_type) [Macro]
This defines an all-in-one context struct, including the context of the underlying
cipher, the hash sub-key, and the per-message state. It expands to

{
struct gcm_key key;
struct gcm_ctx gcm;
context_type cipher;
+

Example use:
struct gcm_aes128_ctx GCM_CTX(struct aes128_ctx);

The following macros operate on context structs of this form.

GCM_SET_KEY (ctx, set_key, encrypt, key) [Macro]
First argument, ctx, is a context struct as defined by GCM_CTX. set_key and en-
crypt are functions for setting the encryption key and for encrypting data using the
underlying cipher.

GCM_SET_IV (ctx, length, data) [Macro]
First argument is a context struct as defined by GCM_CTX. length and data give the
initialization vector (IV).

GCM_UPDATE (ctx, length, data) [Macro]
Simpler way to call gcm_update. First argument is a context struct as defined by
GCM_CTX

GCM_ENCRYPT (ctx, encrypt, length, dst, src) [Macro]

GCM_DECRYPT (ctx, encrypt, length, dst, src) [Macro]

GCM_DIGEST (ctx, encrypt, length, digest) [Macro]

Simpler way to call gcm_encrypt, gcm_decrypt or gecm_digest. First argument is a
context struct as defined by GCM_CTX. Second argument, encrypt, is the encryption
function of the underlying cipher.

Chapter 7: Reference 50

7.4.2.3 GCM-AES interface

The following functions implement the common case of GCM using AES as the underlying
cipher. The variants with a specific AES flavor are recommended, while the fucntinos using
struct gem_aes_ctx are kept for compatibility with older versiosn of Nettle.

struct gcm_aes128_ctx [Context struct]
struct gcm_aes192_ctx [Context struct]
struct gcm_aes256_ctx [Context struct]

Context structs, defined using GCM_CTX.

struct gcm_aes_ctx [Context struct]
Alternative context struct, using the old AES interface.

void gcm_aesl128_set_key (struct gem_aes128_ctx *ctx, const uint8_t [Function]
*key)

void gcm_aesl192_set_key (struct gem_aesl92_ctx *ctx, const uint8_t [Function]
*key)

void gcm_aes256_set_key (struct gem_aes256_ctx *ctx, const uint8_t [Function]
“key)

Initializes ctx using the given key.

void gcm_aes_set_key (struct gecm_aes_ctx *ctx, size_t length, const [Function]
uint8_t *key)
Corresponding function, using the old AES interface. All valid AES key sizes can be

used.

void gcm_aesl128_set_iv (struct gem-aes128_ctx *ctx, size_t length, [Function]
const uint8_t *iv)

void gcm_aesl192_set_iv (struct gem-aesl92_ctx *ctx, size-t length, [Function]
const uint8_-t *iv)

void gcm_aes256_set_iv (struct gem_aes256_ctx *ctx, size_t length, [Function]
const uint8_t *iv)

void gcm_aes_set_iv (struct gecm-aes_ctx *ctx, size_t length, const [Function]

uint8_t *iv)
Initializes the per-message state, using the given IV.

void gcm_aesl128_update (struct gem_aes128_ctx *ctx, size_t length, [Function]
const uint8-t *data)

void gcm_aes192_update (struct gem-aes192_ctx *ctx, size-t length, [Function]
const uint8-t *data)

void gcm_aes256_update (struct gem-aes256_ctx *ctx, size_t length, [Function]
const uint8_t *data)

void gcm_aes_update (struct gecm-aes_ctx *ctx, size_t length, const [Function]

uint8-t *data)
Provides associated data to be authenticated. If used, must be called before gcm_
aes_encrypt or gcm_aes_decrypt. All but the last call for each message must use a
length that is a multiple of the block size.

Chapter 7: Reference 51

void gcm_aesl28_encrypt (struct gem_aes128_ctx *ctx, size_t [Function]
length, uint8_t *dst, const uint8-t *src)

void gcm_aesl192_encrypt (struct gem_aesl92_ctx *ctx, size_t [Function]
length, uint8_-t *dst, const uint8_t *src)

void gcm_aes256_encrypt (struct gem-aes256_ctx *ctx, size_t [Function]
length, uint8_t *dst, const uint8-t *src)

void gcm_aes_encrypt (struct gem_aes_ctx *ctx, size_t length, [Function]
uint8_t *dst, const uint8_t *src)

void gcm_aesl128_decrypt (struct gem-aes128_ctx *ctx, size_t [Function]
length, uint8_t *dst, const uint8-t *src)

void gcm_aesl192_decrypt (struct gem_aes192_ctx *ctx, size_t [Function]
length, uint8_t *dst, const uint8.t *src)

void gcm_aes256_decrypt (struct gem-aes256_ctx *ctx, size_t [Function]
length, uint8_-t *dst, const uint8_t *src)

void gcm_aes_decrypt (struct gem_aes_ctx *ctx, size_t length, [Function]

uint8_t *dst, const uint8_t *src)
Encrypts or decrypts the data of a message. All but the last call for each message
must use a length that is a multiple of the block size.

void gcm_aes128_digest (struct gem-aes128_ctx *ctx, size-t length, [Function]
uint8_t *digest)

void gcm_aes192_digest (struct gem-aes192_ctx *ctx, size-t length, [Function]
uint8_t *digest)

void gcm_aes256_digest (struct gem-aes256_ctx *ctx, size-t length, [Function]
uint8-t *digest)

void gcm_aes_digest (struct gcm_aes_ctx *ctx, size_t length, uint8_-t [Function]
*digest)

Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. It’s strongly recommended that length is GCM_
DIGEST_SIZE, but if you provide a smaller value, only the first length octets of the
digest are written.

7.4.2.4 GCM-Camellia interface

The following functions implement the case of GCM using Camellia as the underlying cipher.

struct gcm_camellial28_ctx [Context struct]
struct gcm_camellia256_ctx [Context struct]
Context structs, defined using GCM_CTX.

void gcm_camellial28_set_key (struct gem-camellial28_ctx *ctx, [Function]
const uint8-t *key)
void gcm_camellia256_set_key (struct gem_camellia256_ctx *ctx, [Function]

const uint8_t *key)
Initializes ctx using the given key.

Chapter 7: Reference 52

void gcm_camellial28_set_iv (struct gem_camellial28_ctx *ctx, [Function]
size_t length, const uint8_t *iv)
void gcm_camellia256_set_iv (struct gem_camellia256_ctx *ctx, [Function]

size_t length, const uint8_t *iv)
Initializes the per-message state, using the given IV.

void gcm_camellial28_update (struct gem-camellial28_ctx *ctx, [Function]
size_t length, const uint8_t *data)
void gcm_camellia256_update (struct gem_camellia256_ctx *ctx, [Function]

size_t length, const uint8_t *data)
Provides associated data to be authenticated. If used, must be called before gcm_
camellia_encrypt or gcm_camellia_decrypt. All but the last call for each message
must use a length that is a multiple of the block size.

void gcm_camellial28_encrypt (struct gem-camellial28_ctx *ctx, [Function]
size_t length, uint8_-t *dst, const uint8_t *src)

void gcm_camellia256_encrypt (struct gem_camellia256_ctx *ctx, [Function]
size_t length, uint8_t *dst, const uint8_t *src)

void gcm_camellial28_decrypt (struct gem_camellial28_ctx *ctx, [Function]
size_t length, uint8_-t *dst, const uint8_t *src)

void gcm_camellia256_decrypt (struct gem-camellia256_ctx *ctx, [Function]

size_t length, uint8_t *dst, const uint8_t *src)
Encrypts or decrypts the data of a message. All but the last call for each message
must use a length that is a multiple of the block size.

void gcm_camellial28_digest (struct gem_camellial28_ctx *ctx, [Function]
size_t length, uint8_t *digest)

void gcm_camellial92_digest (struct gem-camellial92_ctx *ctx, [Function]
size_t length, uint8_t *digest)

void gcm_camellia256_digest (struct gem_camellia256_ctx *ctx, [Function]
size_t length, uint8_t *digest)

void gcm_camellia_digest (struct gecm_camellia_ctx *ctx, size_t [Function]

length, uint8_-t *digest)
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. It’s strongly recommended that length is GCM_
DIGEST_SIZE, but if you provide a smaller value, only the first length octets of the
digest are written.

7.4.3 Counter with CBC-MAC mode

CCM mode is a combination of counter mode with message authentication based on cipher
block chaining, the same building blocks as EAX, see Section 7.4.1 [EAX], page 45. It is
constructed on top of a block cipher which must have a block size of 128 bits. CCM mode
is recommended by NIST in NIST Special Publication 800-38C. Nettle’s support for CCM
consists of a low-level general interface, a message encryption and authentication interface,
and specific functions for CCM using AES as the underlying block cipher. These interfaces
are defined in ‘<nettle/ccm.h>’.

In CCM, the length of the message must be known before processing. The maximum
message size depends on the size of the nonce, since the message size is encoded in a field

https://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf

Chapter 7: Reference 53

which must fit in a single block, together with the nonce and a flag byte. E.g., with a nonce
size of 12 octets, there are three octets left for encoding the message length, the maximum
message length is 224 — 1 octets.

CCM mode encryption operates as follows:

e The nonce and message length are concatenated to create B_O = flags | nonce |
mlength

e The authenticated data and plaintext is formatted into the string B = L(adata) |
adata | padding | plaintext | padding with padding being the shortest string of
zero bytes such that the length of the string is a multiple of the block size, and L (adata)
is an encoding of the length of adata.

e The string B is separated into blocks B_1 ... B_n

e The authentication tag T is calculated as T=0, for i=0 ton, do T = E_k(B_i XOR T)

e An initial counter is then initialized from the nonce to create IC = flags | nonce |
padding, where padding is the shortest string of zero bytes such that IC is exactly one
block in length.

e The authentication tag is encrypted using using CTR mode: MAC = E_k(IC) XOR T

e The plaintext is then encrypted using CTR mode with an initial counter of IC+1.

CCM mode decryption operates similarly, except that the ciphertext and MAC are first
decrypted using CTR mode to retrieve the plaintext and authentication tag. The au-
thentication tag can then be recalculated from the authenticated data and plaintext, and
compared to the value in the message to check for authenticity.

7.4.3.1 General CCM interface

For all of the functions in the CCM interface, cipher is the context struct for the underlying
cipher and f is the encryption function. The cipher’s encryption key must be set before
calling any of the CCM functions. The cipher’s decryption function and key are never used.

struct ccm_ctx [Context struct]
Holds state corresponding to a particular message.

CCM_BLOCK_SIZE [Constant]
CCM'’s block size, 16.

CCM_DIGEST_SIZE [Constant]
Size of the CCM digest, 16.

CCM_MIN_NONCE_SIZE [Constant)|

CCM_MAX_NONCE_SIZE [Constant|
The the minimum and maximum sizes for an CCM nonce, 7 and 14, respectively.

CCM_MAX_MSG_SIZE (nonce_size) [Macro]

The largest allowed plaintext length, when using CCM with a nonce of the given size.

void ccm_set_nonce (struct ccm-_ctx *ctx, const void *cipher, [Function]
nettle_cipher_func *f, size_t noncelen, const uint8_t *nonce, size_t
authlen, size_t msglen, size_t taglen)
Initializes ctx using the given nonce and the sizes of the authenticated data, message,
and MAC to be processed.

Chapter 7: Reference 54

void ccm_update (struct ccm_ctx *ctx, const void *cipher, [Function]
nettle_cipher_func *f, size_t length, const uint8_t *data)
Provides associated data to be authenticated. Must be called after ccm_set_nonce,
and before ccm_encrypt, ccm_decrypt, or ccm_digest.

void ccm_encrypt (struct ccm_ctx *ctx, const void *cipher, [Function]
nettle_cipher_func *f, size_t length, uint8_t *dst, const uint8_t *src)
void ccm_decrypt (struct ccm_ctx *ctx, const void *cipher, [Function]

nettle_cipher_func *f, size_t length, uint8_t *dst, const uint8_t *src)
Encrypts or decrypts the message data. Must be called after ccm_set_nonce and
before ccm_digest. All but the last call for each message must use a length that is
a multiple of the block size.

void ccm_digest (struct cem_ctx *ctx, const void *cipher, [Function]
nettle_cipher_func *f, size_t length, uint8_t *digest)
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. length is usually equal to the taglen parameter
supplied to ccm_set_nonce, but if you provide a smaller value, only the first length
octets of the digest are written.

To encrypt a message using the general CCM interface, set the message nonce and length
using ccm_set_nonce and then call ccm_update to generate the digest of any authenticated
data. After all of the authenticated data has been digested use ccm_encrypt to encrypt the
plaintext. Finally, use ccm_digest to return the encrypted MAC.

To decrypt a message, use ccm_set_nonce and ccm_update the same as you would for
encryption, and then call ccm_decrypt to decrypt the ciphertext. After decrypting the
ciphertext ccm_digest will return the encrypted MAC which should be identical to the
MAC in the received message.

7.4.3.2 CCM message interface

The CCM message fuctions provides a simple interface that will perform authentication and
message encryption in a single function call. The length of the cleartext is given by mlength
and the length of the ciphertext is given by clength, always exactly tlength bytes longer
than the corresponding plaintext. The length argument passed to a function is always the
size for the result, clength for the encryption functions, and mlength for the decryption
functions.

void ccm_encrypt_message (void *cipher, nettle_cipher_func *f, [Function]
size_t nlength, const uint8_t *nonce, size_t alength, const uint8_t *adata,
size_t tlength, size_t clength, uint8_t *dst, const uint8_t *src)
Computes the message digest from the adata and src parameters, encrypts the plain-
text from src, appends the encrypted MAC to ciphertext and outputs it to dst.

int ccm_decrypt_message (void *cipher, nettle_cipher_func *f, size_.t ~ [Function]

nlength, const uint8_t *nonce, size_t alength, const uint8-t *adata, size_t
tlength, size_t mlength, uint8_t *dst, const uint8_t *src)

Decrypts the ciphertext from src, outputs the plaintext to dst, recalculates the MAC

from adata and the plaintext, and compares it to the final tlength bytes of src. If the

Chapter 7: Reference 55

values of the received and calculated MACs are equal, this will return 1 indicating a
valid and authenticated message. Otherwise, this function will return zero.

7.4.3.3 CCM-AES interface

The AES CCM functions provide an API for using CCM mode with the AES block ciphers.
The parameters all have the same meaning as the general and message interfaces, except
that the cipher, f, and ctx parameters are replaced with an AES context structure, and a
set-key function must be called before using any of the other functions in this interface.

struct ccm_aes128_ctx [Context struct]
Holds state corresponding to a particular message encrypted using the AES-128 block
cipher.

struct ccm_aesl192_ctx [Context struct]
Holds state corresponding to a particular message encrypted using the AES-192 block
cipher.

struct ccm_aes256_ctx [Context struct]
Holds state corresponding to a particular message encrypted using the AES-256 block
cipher.

void ccm_aes128_set_key (struct ccm_aesl28_ctx *ctx, const uint8_t [Function]
*key)
void ccm_aesl192_set_key (struct ccm_aes192_ctx *ctx, const uint8_t [Function]
*key)
void ccm_aes256_set_key (struct ccm_aes256_ctx *ctx, const uint8_t [Function]
*key)
Initializes the encryption key for the AES block cipher. One of these functions must
be called before any of the other functions in the AES CCM interface.

void ccm_aes128_set_nonce (struct ccm_aesl28_ctx *ctx, size_t [Function]
noncelen, const uint8_t *nonce, size_t authlen, size_t msglen, size_t
taglen)

void ccm_aes192_set_nonce (struct ccm_aes192_ctx *ctx, size_t [Function]
noncelen, const uint8_t *nonce, size_t authlen, size_t msglen, size_t
taglen)

void ccm_aes256_set_nonce (struct ccm_aes256_ctx *ctx, size_t [Function]
noncelen, const uint8_t *nonce, size_t authlen, size_t msglen, size_t
taglen)

These are identical to ccm_set_nonce, except that cipher, f, and ctx are replaced
with a context structure.

void ccm_aes128_update (struct ccm_aesl28_ctx *ctx, size_t length, [Function]
const uint8-t *data)

void ccm_aes192_update (struct ccm_aes192_ctx *ctx, size_t length, [Function]
const uint8-t *data)

void ccm_aes256_update (struct ccm-_aes256-ctx *ctx, size_t length, [Function]

const uint8-t *data)
These are identical to ccm_set_update, except that cipher, f, and ctx are replaced
with a context structure.

Chapter 7: Reference 56

void ccm_aesl28_encrypt (struct ccm_aesl28_ctx *ctx, size_t [Function]
length, uint8_t *dst, const uint8-t *src)

void ccm_aesl192_encrypt (struct ccm_aesl192_ctx *ctx, size_t [Function]
length, uint8_-t *dst, const uint8_t *src)

void ccm_aes256_encrypt (struct ccm-aes256_ctx *ctx, size_t [Function]
length, uint8_t *dst, const uint8-t *src)

void ccm_aes128_decrypt (struct ccm-aes128_ctx *ctx, size_t [Function]
length, uint8_t *dst, const uint8_t *src)

void ccm_aesl192_decrypt (struct ccm-aesl192_ctx *ctx, size_t [Function]
length, uint8_t *dst, const uint8-t *src)

void ccm_aes256_decrypt (struct ccm_aes256_ctx *ctx, size_t [Function]

length, uint8_t *dst, const uint8.t *src)
These are identical to ccm_set_encrypt and ccm_set_decrypt, except that cipher,
f, and ctx are replaced with a context structure.

void ccm_aesl128_digest (struct ccm_aesl28_ctx *ctx, size_t length, [Function]
uint8_t *digest)

void ccm_aes192_digest (struct ccm_aesl192_ctx *ctx, size_t length, [Function]
uint8-t *digest)

void ccm_aes256_digest (struct ccm_aes256_ctx *ctx, size_t length, [Function]

uint8-t *digest)
These are identical to ccm_set_digest, except that cipher, f, and ctx are replaced
with a context structure.

void ccm_aes128_encrypt_message (struct ccm-aes128_ctx *ctx, [Function]
size_t nlength, const uint8-t *nonce, size_t alength, const uint8_t *adata,
size_t tlength, size_-t clength, uint8_t *dst, const uint8_t *src)
void ccm_aesl192_encrypt_message (struct ccm-aes192_ctx *ctx, [Function]
size_t nlength, const uint8_t *nonce, size_t alength, const uint8_t *adata,
size_t tlength, size_t clength, uint8_t *dst, const uint8_t *src)
void ccm_aes256_encrypt_message (struct ccm-aes256_ctx *ctx, [Function]
size_t nlength, const uint8_t *nonce, size_-t alength, const uint8-t *adata,
size_t tlength, size_t clength, uint8_t *dst, const uint8_t *src)
int ccm_aes128_decrypt_message (struct ccm_aes128_ctx *ctx, size.t [Function]
nlength, const uint8_t *nonce, size_t alength, const uint8_-t *adata, size_t
tlength, size_t mlength, uint8_t *dst, const uint8-t *src)
int ccm_aes192_decrypt_message (struct ccm_aes192_ctx *ctx, size.t [Function]
nlength, const uint8_t *nonce, size_t alength, const uint8-t *adata, size_t
tlength, size_t mlength, uint8_t *dst, const uint8_t *src)
int ccm_aes192_decrypt_message (struct ccm_aes256_ctx *ctx, size.t [Function]
nlength, const uint8-t *nonce, size_t alength, const uint8-t *adata, size_t
tlength, size_t mlength, uint8_t *dst, const uint8_-t *src)
These are identical to ccm_encrypt_message and ccm_decrypt_message except that
cipher and f are replaced with a context structure.

7.4.4 ChaCha-Poly1305

ChaCha-Poly1305 is a combination of the ChaCha stream cipher and the poly1305 message
authentication code (see Section 7.5.4 [Poly1305], page 67). It originates from the NaCl

Chapter 7: Reference 57

cryptographic library by D. J. Bernstein et al, which defines a similar construction but with
Salsa20 instead of ChaCha.

Nettle’s implementation of ChaCha-Poly1305 follows RFC 8439, where the ChaCha ci-
pher is initialized with a 12-byte nonce and a 4-byte block counter. This allows up to 256
gigabytes of data to be encrypted using the same key and nonce.

For ChaCha-Poly1305, the ChaCha cipher is initialized with a key, of 256 bits, and a
per-message nonce. The first block of the key stream (counter all zero) is set aside for
the authentication subkeys. Of this 64-octet block, the first 16 octets specify the poly1305
evaluation point, and the next 16 bytes specify the value to add in for the final digest.
The final 32 bytes of this block are unused. Note that unlike poly1305-aes, the evaluation
point depends on the nonce. This is preferable, because it leaks less information in case the
attacker for some reason is lucky enough to forge a valid authentication tag, and observe
(from the receiver’s behaviour) that the forgery succeeded.

The ChaCha key stream, starting with counter value 1, is then used to encrypt
the message. For authentication, polyl1305 is applied to the concatenation of the
associated data, the cryptotext, and the lengths of the associated data and the message,
each a 64-bit number (eight octets, little-endian). Nettle defines ChaCha-Poly1305 in
‘<nettle/chacha-poly1305.h>".

CHACHA_POLY1305_BLOCK_SIZE [Constant)]
Same as the ChaCha block size, 64.

CHACHA_POLY1305_KEY_SIZE [Constant|
ChaCha-Poly1305 key size, 32.

CHACHA_POLY1305_NONCE_SIZE [Constant|
ChaCha-Poly1305 nonce size, 12.

CHACHA_POLY1305_DIGEST_SIZE [Constant]
Digest size, 16.

struct chacha_poly1305_ctx [Context struct]

void chacha_poly1305_set_key (struct chacha_polyl305_ctx *ctx, [Function]
const uint8_t *key)
Initializes ctx using the given key. Before using the context, you must also call
chacha_poly1305_set_nonce, see below.

void chacha_poly1305_set_nonce (struct chacha_polyl305_ctx *ctx, [Function]
const uint8_t *nonce)
Initializes the per-message state, using the given nonce.

void chacha_poly1305_update (struct chacha_polyl305_ctx *ctx, [Function]
size_t length, const uint8_t *data)
Process associated data for authentication.

Chapter 7: Reference 58

void chacha_poly1305_encrypt (struct chacha_polyl305_ctx *ctx, [Function]
size_t length, uint8_t *dst, const uint8_t *src)
void chacha_poly1305_decrypt (struct chacha_polyl305_ctx *ctx, [Function]

size_t length, uint8_-t *dst, const uint8_t *src)
Encrypts or decrypts the data of a message. All but the last call for each message
must use a length that is a multiple of the block size.

void chacha_poly1305_digest (struct chacha_polyl305_ctx *ctx, [Function]
size_t length, uint8_t *digest)
Extracts the message digest (also known “authentication tag”). This is the final
operation when processing a message. If length is smaller than CHACHA_POLY1305_
DIGEST_SIZE, only the first length octets of the digest are written.

7.4.5 Synthetic Initialization Vector AEAD

SIV-CMAC mode is a combination of counter mode with message authentication based on
CMAC. Unlike other counter AEAD modes, it provides protection against accidental nonce
misuse, making it a good choice for stateless-servers that cannot ensure nonce uniqueness.
It is constructed on top of a block cipher which must have a block size of 128 bits. Nettle’s
support for SIV-CMAC consists of a message encryption and authentication interface, for
SIV-CMAC using AES as the underlying block cipher. When a nonce is re-used with this
mode, message authenticity is retained however an attacker can determine whether the
same plaintext was protected with the two messages sharing the nonce. These interfaces
are defined in ‘<nettle/siv-cmac.h>’.

Unlike other AEAD mode in SIV-CMAC the initialization vector serves as the tag. That
means that in the generated ciphertext the tag precedes the ciphertext.

Note also, that the SIV-CMAC algorithm, as specified in RFC 5297, introduces the notion
of authenticated data which consist of multiple components. For example with SIV-CMAC
the authentication tag of data X followed by Y, is different than the concatenated data X
|| Y. The interfaces described below follow the AEAD paradigm and do not allow access
to this feature and also require the use of a non-empty nonce. In the terminology of the
RFC, the input to the S2V function is always a vector of three elements, where S1 is the
authenticated data, S2 is the nonce, and S3 is the plaintext.

7.4.5.1 General interface

SIV_BLOCK_SIZE [Constant]
SIV-CMAC’s block size, 16.

SIV_DIGEST_SIZE [Constant)|
Size of the SIV-CMAC digest or initialization vector, 16.

SIV_MIN_NONCE_SIZE [Constant)|
The the minimum size for an SIV-CMAC nonce, 1.

7.4.5.2 SIV-CMAC-AES interface

The AES SIV-CMAC functions provide an API for using SIV-CMAC mode with the AES
block ciphers. The parameters all have the same meaning as the general and message
interfaces, except that the cipher, f, and ctx parameters are replaced with an AES context

Chapter 7: Reference 59

structure, and a set-key function must be called before using any of the other functions in
this interface.

struct siv_cmac_aes128_ctx [Context struct]
Holds state corresponding to a particular message encrypted using the AES-128 block
cipher.

struct siv_cmac_aes256_ctx [Context struct]
Holds state corresponding to a particular message encrypted using the AES-256 block
cipher.

void siv_cmac_aes128_set_key (struct siv_cmac_aes128_ctx *ctx, [Function]

const uint8-t *key)
void siv_cmac_aes256_set_key (struct siv_cmac_aes256_ctx *ctx, [Function]

const uint8_t *key)
Initializes the encryption key for the AES block cipher. One of these functions must
be called before any of the other functions in the AES SIV-CMAC interface.

void siv_cmac_aesl128_encrypt_message (struct siv_cmac_aesl128_ctx [Function]
*ctx, size-t nlength, const uint8_-t *nonce, size_t alength, const uint8_t
*adata, size_t clength, uint8_t *dst, const uint8_-t *src)
void siv_cmac_aes256_encrypt_message (struct siv_cmac_aes256_ctx [Function]
*ctx, size_t nlength, const uint8_t *nonce, size_t alength, const uint8_t
*adata, size_t clength, uint8_t *dst, const uint8_t *src)
Computes the message digest from the adata and src parameters, encrypts the plain-
text from src, prepends the initialization vector to the ciphertext and outputs it to
dst. The clength variable must be equal to the length of src¢ plus SIV_DIGEST_SIZE.

int siv_cmac_aes128_decrypt_message (struct siv_cmac_aesl28_ctx [Function]
*ctx, size_t nlength, const uint8_t *nonce, size_t alength, const uint8_t
*adata, size_t mlength, uint8_t *dst, const uint8-t *src)
int siv_cmac_aes256_decrypt_message (struct siv_cmac_aesl28_ctx [Function]
*ctx, size_t nlength, const uint8_t *nonce, size_t alength, const uint8_t
*adata, size_t mlength, uint8_t *dst, const uint8_t *src)
Decrypts the ciphertext from src, outputs the plaintext to dst, recalculates the ini-
tialization vector from adata and the plaintext. If the values of the received and
calculated initialization vector are equal, this will return 1 indicating a valid and
authenticated message. Otherwise, this function will return zero.

7.4.6 The struct nettle_aead abstraction

Nettle includes a struct including information about the supported hash functions. It is
defined in ‘<nettle/nettle-meta.h>’.

struct nettle_aead name context_size block_size key_size nonce_size [Meta struct]
digest_size set_encrypt_key set_decrypt_key set_nonce update encrypt decrypt
digest

The last seven attributes are function pointers.

Chapter 7: Reference 60

struct nettle_aead nettle_gcm_aes128 [Constant Struct]
struct nettle_aead nettle_gcm_aes192 [Constant Struct]
struct nettle_aead nettle_gcm_aes256 [Constant Struct]
struct nettle_aead nettle_gcm_camellial28 [Constant Struct]
struct nettle_aead nettle_gcm_camellia256 [Constant Struct]
struct nettle_aead nettle_eax_aes128 [Constant Struct]
struct nettle_aead nettle_chacha_poly1305 [Constant Struct]

These are most of the AEAD constructions that Nettle implements. Note that CCM

is missing; it requirement that the message size is specified in advance makes it

incompatible with the nettle_aead abstraction.
Nettle also exports a list of all these constructions.

const struct nettle_aead ** nettle_get_aeads (void) [Function]
Returns a NULL-terminated list of pointers to supported algorithms.This list can be
used to dynamically enumerate or search the supported algorithms.

nettle_aeads [Macro]
A macro expanding to a call to nettle_get_aeads. In earlier versions, this was not a
macro but the actual array of pointers.

7.5 Keyed Hash Functions

A keyed hash function, or Message Authentication Code (MAC) is a function that takes a
key and a message, and produces fixed size MAC. It should be hard to compute a message
and a matching MAC without knowledge of the key. It should also be hard to compute the
key given only messages and corresponding MACs.

Keyed hash functions are useful primarily for message authentication, when Alice and
Bob shares a secret: The sender, Alice, computes the MAC and attaches it to the message.
The receiver, Bob, also computes the MAC of the message, using the same key, and compares
that to Alice’s value. If they match, Bob can be assured that the message has not been
modified on its way from Alice.

However, unlike digital signatures, this assurance is not transferable. Bob can’t show
the message and the MAC to a third party and prove that Alice sent that message. Not
even if he gives away the key to the third party. The reason is that the same key is used on
both sides, and anyone knowing the key can create a correct MAC for any message. If Bob
believes that only he and Alice knows the key, and he knows that he didn’t attach a MAC
to a particular message, he knows it must be Alice who did it. However, the third party
can’t distinguish between a MAC created by Alice and one created by Bob.

Keyed hash functions are typically a lot faster than digital signatures as well.

7.5.1 HMAC

One can build keyed hash functions from ordinary hash functions. Older constructions
simply concatenate secret key and message and hashes that, but such constructions have
weaknesses. A better construction is HMAC, described in RFC 2104.

For an underlying hash function H, with digest size 1 and internal block size b, HMAC-
H is constructed as follows: From a given key k, two distinct subkeys k_i and k_o are

Chapter 7: Reference 61

constructed, both of length b. The HMAC-H of a message m is then computed as H(k_o |
H(k_i | m)), where | denotes string concatenation.

HMAC keys can be of any length, but it is recommended to use keys of length 1, the
digest size of the underlying hash function H. Keys that are longer than b are shortened to
length 1 by hashing with H, so arbitrarily long keys aren’t very useful.

Nettle’s HMAC functions are defined in ‘<nettle/hmac.h>’. There are abstract functions
that use a pointer to a struct nettle_hash to represent the underlying hash function and
void * pointers that point to three different context structs for that hash function. There are
also concrete functions for HMAC-MD5, HMAC-RIPEMD160 HMAC-SHA1, HMAC-SHA256,
HMAC-SHA512, and HMAC-SM3. First, the abstract functions:

void hmac_set_key (void *outer, void *inner, void *state, const [Function]
struct nettle_hash *H, size_t length, const uint8_t *key)
Initializes the three context structs from the key. The outer and inner contexts
corresponds to the subkeys k_o and k_i. state is used for hashing the message, and
is initialized as a copy of the inner context.

void hmac_update (void *state, const struct nettle_hash *H, size_t [Function]
length, const uint8_t *data)
This function is called zero or more times to process the message. Actually,
hmac_update(state, H, length, data) is equivalent to H->update(state,
length, data), so if you wish you can use the ordinary update function of the
underlying hash function instead.

void hmac_digest (const void *outer, const void *inner, void [Function]
*state, const struct nettle_hash *H, size_t length, uint8_t *digest)
Extracts the MAC of the message, writing it to digest. outer and inner are not
modified. length is usually equal to H->digest_size, but if you provide a smaller
value, only the first length octets of the MAC are written.

This function also resets the state context so that you can start over processing a new
message (with the same key).

Like for CBC, there are some macros to help use these functions correctly.

HMAC_CTX (type) [Macro]
Expands to

{
type outer;
type inner;
type state;
¥

It can be used to define a HMAC context struct, either directly,
struct HMAC_CTX(struct md5_ctx) ctx;

or to give it a struct tag,

struct hmac_md5_ctx HMAC_CTX (struct md5_ctx);

Chapter 7: Reference 62

HMAC_SET_KEY (ctx, H, length, key) [Macro]
ctx is a pointer to a context struct as defined by HMAC_CTX, H is a pointer to a const
struct nettle_hash describing the underlying hash function (so it must match the
type of the components of ctx). The last two arguments specify the secret key.

HMAC_DIGEST (ctx, H, length, digest) [Macro]
ctx is a pointer to a context struct as defined by HMAC_CTX, H is a pointer to a
const struct nettle_hash describing the underlying hash function. The last two
arguments specify where the digest is written.

Note that there is no HMAC_UPDATE macro; simply call hmac_update function directly, or
the update function of the underlying hash function.

Now we come to the specialized HMAC functions, which are easier to use than the general
HMAC functions.

7.5.1.1 HMAC-MD5

struct hmac_md5_ctx [Context struct]

void hmac_md5_set_key (struct hmac_md5_ctx *ctx, size_t [Function]
key_length, const uint8-t *key)
Initializes the context with the key.

void hmac_md5_update (struct hmac_md5_ctx *ctx, size_t length, [Function]
const uint8-t *data)
Process some more data.

void hmac_md5_digest (struct hmac.md5_ctx *ctx, size_t length, [Function]
uint8-t *digest)
Extracts the MAC, writing it to digest. length may be smaller than MD5_DIGEST_SIZE,
in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.
7.5.1.2 HMAC-RIPEMD160

struct hmac_ripemd160_ctx [Context struct]

void hmac_ripemd160_set_key (struct hmac_ripemd160_ctx *ctx, [Function]
size_t key_length, const uint8-t *key)
Initializes the context with the key.

void hmac_ripemd160_update (struct hmac_ripemd160_ctx *ctx, size_t [Function]
length, const uint8_t *data)
Process some more data.

void hmac_ripemd160_digest (struct hmac_ripemdl160_ctx *ctx, size_t [Function]
length, uint8_-t *digest)
Extracts the MAC, writing it to digest. length may be smaller than RIPEMD160_
DIGEST_SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

Chapter 7: Reference 63

7.5.1.3 HMAC-SHA1

struct hmac_shal_ctx [Context struct]

void hmac_shal_set_key (struct hmac_shal_ctx *ctx, size_t [Function]
key_length, const uint8-t *key)
Initializes the context with the key.

void hmac_shal_update (struct hmac_shal_ctx *ctx, size_t length, [Function]
const uint8_t *data)
Process some more data.

void hmac_shal_digest (struct hmac_shal_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Extracts the MAC, writing it to digest. length may be smaller than SHA1_DIGEST_
SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

7.5.1.4 HMAC-SHA256

struct hmac_sha256_ctx [Context struct]

void hmac_sha256_set_key (struct hmac_sha256_ctx *ctx, size_t [Function]
key_length, const uint8-t *key)
Initializes the context with the key.

void hmac_sha256_update (struct hmac_sha256_ctx *ctx, size_t [Function]
length, const uint8_t *data)
Process some more data.

void hmac_sha256_digest (struct hmac_sha256_ctx *ctx, size_t [Function]
length, uint8_t *digest)
Extracts the MAC, writing it to digest. length may be smaller than SHA256_DIGEST_
SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

7.5.1.5 HMAC-SHA512

struct hmac_shab12_ctx [Context struct]

void hmac_shab12_set_key (struct hmac_sha512_ctx *ctx, size_t [Function]
key_length, const uint8-t *key)
Initializes the context with the key.

void hmac_shabl2_update (struct hmac_sha512_ctx *ctx, size_t [Function]
length, const uint8_t *data)
Process some more data.

void hmac_shab12_digest (struct hmac_sha512_ctx *ctx, size_t [Function]
length, uint8_-t *digest)
Extracts the MAC, writing it to digest. length may be smaller than SHA512_DIGEST_
SIZE, in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

Chapter 7: Reference 64

7.5.1.6 HMAC-SM3

struct hmac_sm3_ctx [Context struct]

void hmac_sm3_set_key (struct hmac_sm3_ctx *ctx, size_t [Function]
key_length, const uint8-t *key)
Initializes the context with the key.

void hmac_sm3_update (struct hmac_sm3_ctx *ctx, size_t length, [Function]
const uint8-t *data)
Process some more data.

void hmac_sm3_digest (struct hmac_sm3_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Extracts the MAC, writing it to digest. length may be smaller than SM3_DIGEST_SIZE,
in which case only the first length octets of the MAC are written.

This function also resets the context for processing new messages, with the same key.

7.5.2 UMAC

UMAC is a message authentication code based on universal hashing, and designed for high
performance on modern processors (in contrast to GCM, See Section 7.4.2 [GCM], page 47,
which is designed primarily for hardware performance). On processors with good integer
multiplication performance, it can be 10 times faster than SHA256 and SHA512. UMAC is
specified in RFC 4418.

The secret key is always 128 bits (16 octets). The key is used as an encryption key for
the AES block cipher. This cipher is used in counter mode to generate various internal
subkeys needed in UMAC. Messages are of arbitrary size, and for each message, UMAC also
needs a unique nonce. Nonce values must not be reused for two messages with the same
key, but they need not be kept secret.

The nonce must be at least one octet, and at most 16; nonces shorter than 16 octets
are zero-padded. Nettle’s implementation of UMAC increments the nonce automatically
for each message, so explicitly setting the nonce for each message is optional. This auto-
increment uses network byte order and it takes the length of the nonce into account. E.g.,
if the initial nonce is “abc” (3 octets), this value is zero-padded to 16 octets for the first
message. For the next message, the nonce is incremented to “abd”, and this incremented
value is zero-padded to 16 octets.

UMAC is defined in four variants, for different output sizes: 32 bits (4 octets), 64 bits
(8 octets), 96 bits (12 octets) and 128 bits (16 octets), corresponding to different trade-offs
between speed and security. Using a shorter output size sometimes (but not always!) gives
the same result as using a longer output size and truncating the result. So it is important to
use the right variant. For consistency with other hash and MAC functions, Nettle’s _digest
functions for UMAC accept a length parameter so that the output can be truncated to any
desired size, but it is recommended to stick to the specified output size and select the umac
variant corresponding to the desired size.

The internal block size of UMAC is 1024 octets, and it also generates more than 1024
bytes of subkeys. This makes the size of the context struct quite a bit larger than other
hash functions and MAC algorithms in Nettle.

Nettle defines UMAC in ‘<nettle/umac.h>’.

Chapter 7: Reference 65

struct umac32_ctx [Context struct]

struct umac64_ctx [Context struct]

struct umac96_ctx [Context struct]

struct umacl28_ctx [Context struct]
Each UMAC variant uses its own context struct.

UMAC_KEY_SIZE [Constant]
The UMAC key size, 16.

UMAC_MIN_NONCE_SIZE [Constant|
UMAC_MAX_NONCE_SIZE [Constant]
The the minimum and maximum sizes for an UMAC nonce, 1 and 16, respectively.

UMAC32_DIGEST_SIZE [Constant)|
The size of an UMAC32 digest, 4.

UMAC64_DIGEST_SIZE [Constant|
The size of an UMACG64 digest, 8.

UMAC96_DIGEST_SIZE [Constant|
The size of an UMAC96 digest, 12.

UMAC128_DIGEST_SIZE [Constant)|
The size of an UMAC128 digest, 16.

UMAC_BLOCK_SIZE [Constant]
The internal block size of UMAC.

void umac32_set_key (struct umac32_ctx *ctx, const uint8_t *key) [Function]
void umac64_set_key (struct umac64_ctx *ctx, const uint8_t *key) [Function]
void umac96_set_key (struct umac96_ctx *ctx, const uint8_t *key) [Function]
void umacl128_set_key (struct umacl28_ctx *ctx, const uint8_t *key) [Function]

These functions initialize the UMAC context struct. They also initialize the nonce to
zero (with length 16, for auto-increment).

void umac32_set_nonce (struct umac32_ctx *ctx, size_t length, const [Function]
uint8_t *nonce)
void umac64_set_nonce (struct umac64_ctx *ctx, size_t length, const [Function]
uint8-t *nonce)
void umac96_set_nonce (struct umac96_ctx *ctx, size_t length, const [Function]
uint8_t *nonce)
void umacl128_set_nonce (struct umacl28_ctx *ctx, size_t length, [Function]
const uint8-t *nonce)
Sets the nonce to be used for the next message. In general, nonces should be set before
processing of the message. This is not strictly required for UMAC (the nonce only
affects the final processing generating the digest), but it is nevertheless recommended
that this function is called before the first _update call for the message.

Chapter 7: Reference

void

void

void

void

void

void

void

void

umac32_update (struct umac32_ctx *ctx, size_t length, const
uint8_t *data)

umac64_update (struct umac64_ctx *ctx, size_t length, const
uint8_t *data)

umac96_update (struct umac96_ctx *ctx, size_t length, const
uint8_t *data)

umac128_update (struct umacl28_ctx *ctx, size_t length, const
uint8_t *data)

These functions are called zero or more times to process the message.

umac32_digest (struct umac32_ctx *ctx, size_t length, uint8_t
*digest)

umac64_digest (struct umac64_ctx *ctx, size_t length, uint8_t
*digest)

umac96_digest (struct umac96_ctx *ctx, size_t length, uint8_t
*digest)

umac128_digest (struct umacl28_ctx *ctx, size_t length,
uint8-t *digest)

66

[Function]
[Function]
[Function]

[Function]

[Function]
[Function]
[Function]

[Function]

Extracts the MAC of the message, writing it to digest. length is usually equal to the
specified output size, but if you provide a smaller value, only the first length octets
of the MAC are written. These functions reset the context for processing of a new
message with the same key. The nonce is incremented as described above, the new
value is used unless you call the _set_nonce function explicitly for each message.

7.5.3 CMAC

CMAC is a message authentication code based on CBC encryption mode. It is suitable
for systems where block ciphers are preferrable and perform better than hash functions.
CMAC-128 is specified in RFC4493. The block size is always 128 bits (16 octets). CMAC-64
is specified by NIST Special Publication 800-38B. The block size is always 64 bits (8 octets).

Nettle provides helper functions for CMAC-128 with the AES block cipher and for CMAC-
64 with the Tripple-DES block cipher.

Nettle defines CMAC in ‘<nettle/cmac.h>’.

struct cmac_aes128_ctx
struct cmac_aes256_ctx

CMAC128_DIGEST_SIZE

void

void

The size of an CMAC-128 digest, 16.

cmac_aes128_set_key (struct cmac_aes128_ctx *ctx, const
uint8_t *key)
This function initializes the CMAC context struct for AES-128.

cmac_aes128_update (struct cmac-aes128_ctx *ctx, size_t
length, const uint8_t *data)
This function is called zero or more times to process the message.

[Context struct]
[Context struct]

[Constant|

[Function]

[Function]

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38B.pdf

Chapter 7: Reference 67

void cmac_aesl128_digest (struct cmac_aesI28_ctx *ctx, size_t [Function]
length, uint8_-t *digest)
Extracts the MAC of the message, writing it to digest. length is usually equal to the
specified output size, but if you provide a smaller value, only the first length octets
of the MAC are written. This function resets the context for processing of a new
message with the same key.

void cmac_aes256_set_key (struct cmac_aes256_ctx *ctx, const [Function]
uint8-t *key)
This function initializes the CMAC context struct for AES-256.

void cmac_aes256_update (struct cmac-aes256_ctx *ctx, size_t [Function]
length, const uint8_t *data)
This function is called zero or more times to process the message.

void cmac_aes256_digest (struct cmac-aes256_ctx *ctx, size_t [Function]
length, uint8_-t *digest)
Extracts the MAC of the message, writing it to digest. length is usually equal to the
specified output size, but if you provide a smaller value, only the first length octets
of the MAC are written. This function resets the context for processing of a new
message with the same key.

struct cmac_des3_ctx [Context struct]
CMAC64_DIGEST_SIZE [Constant)|
The size of an CMAC-64 digest, 8.
void cmac_des3_set_key (struct cmac-des3_ctx *ctx, const uint8_t [Function]
*key)

This function initializes the CMAC context struct for Tripple-DES.

void cmac_des3_update (struct cmac_des3_ctx *ctx,size_t length, [Function]
const uint8_-t *data)
This function is called zero or more times to process the message.

void cmac_des3_digest (struct cmac_des3_ctx *ctx, size_t length, [Function]
uint8_t *digest)
Extracts the MAC of the message, writing it to digest. length is usually equal to the
specified output size, but if you provide a smaller value, only the first length octets
of the MAC are written. This function resets the context for processing of a new
message with the same key.

7.5.4 Poly1305

Poly1305-AES is a message authentication code designed by D. J. Bernstein. It treats the
message as a polynomial modulo the prime number 2'30 — 5.

The key, 256 bits, consists of two parts, where the first half is an AES-128 key, and the
second half specifies the point where the polynomial is evaluated. Of the latter half, 22 bits
are set to zero, to enable high-performance implementation, leaving 106 bits for specifying
an evaluation point r. For each message, one must also provide a 128-bit nonce. The nonce
is encrypted using the AES key, and that’s the only thing AES is used for.

Chapter 7: Reference 68

The message is split into 128-bit chunks (with final chunk possibly being shorter), each
read as a little-endian integer. Each chunk has a one-bit appended at the high end. The
resulting integers are treated as polynomial coefficients modulo 2'30—5, and the polynomial
is evaluated at the point r. Finally, this value is reduced modulo 2'28, and added (also
modulo 2'28) to the encrypted nonce, to produce an 128-bit authenticator for the message.
See https://cr.yp.to/mac/poly1305-20050329.pdf for further details.

Clearly, variants using a different cipher than AES could be defined. Another variant is
the ChaCha-Poly1305 AEAD construction (see Section 7.4.4 [ChaCha-Poly1305], page 56).
Nettle defines Poly1305-AES in ‘nettle/poly1305.h’.

POLY1305_AES_KEY_SIZE [Constant)|
Key size, 32 octets.

POLY1305_AES_DIGEST_SIZE [Constant|
Size of the digest or “authenticator”, 16 octets.

POLY1305_AES_NONCE_SIZE [Constant|
Nonce size, 16 octets.

struct polyl305_aes_ctx [Context struct]
The poly1305-aes context struct.

void poly1305_aes_set_key (struct polyl305_aes_ctx *ctx, const [Function]
uint8_t *key)
Initialize the context struct. Also sets the nonce to zero.

void poly1305_aes_set_nonce (struct polyl305_aes_ctx *ctx, const [Function]
uint8_t *nonce)
Sets the nonce. Calling this function is optional, since the nonce is incremented
automatically for each message.

void poly1305_aes_update (struct polyl305_aes_ctx *ctx, size_t [Function]
length, const uint8_t *data)
Process more data.

void poly1305_aes_digest (struct polyl305_aes_ctx *ctx, size_t [Function]
length, uint8_-t *digest)
Extracts the digest. If length is smaller than POLY1305_AES_DIGEST_SIZE, only the
first length octets are written. Also increments the nonce, and prepares the context
for processing a new message.

7.6 Key derivation Functions

A key derivation function (KDF) is a function that from a given symmetric key derives
other symmetric keys. A sub-class of KDFs is the password-based key derivation functions
(PBKDFs), which take as input a password or passphrase, and its purpose is typically to
strengthen it and protect against certain pre-computation attacks by using salting and
expensive computation.

https://cr.yp.to/mac/poly1305-20050329.pdf

Chapter 7: Reference 69

7.6.1 HKDF: HMAC-based Extract-and-Expand

HKDF is a key derivation function used as a building block of higher-level protocols like
TLS 1.3. It is a derivation function based on HMAC described in RFC 5869, and is split
into two logical modules, called ’extract’ and 'expand’. The extract module takes an initial
secret and a random salt to "extract" a fixed-length pseudorandom key (PRK). The second
stage takes as input the previous PRK and some informational data (e.g., text) and expands
them into multiple keys.

Nettle’s HKDF functions are defined in ‘<nettle/hkdf.h>’. There are two abstract
functions for the extract and expand operations that operate on any HMAC implemented
via the nettle_hash_update_func, and nettle_hash_digest_func interfaces.

void hkdf_extract (void *mac_ctx, nettle_hash_update_func *update, [Function]
nettle_hash_digest_func *digest, size_t digest_size,size_t secret_size, const
uint8-t *secret, uint8_t *dst)
Extract a Pseudorandom Key (PRK) from a secret and a salt according to HKDF.
The HMAC must have been initialized, with its key being the salt for the Extract
operation. This function will call the update and digest functions passing the mac_ctx
context parameter as an argument in order to compute digest of size digest_size.
Inputs are the secret secret of length secret_length. The output length is fixed to
digest_size octets, thus the output buffer dst must have room for at least digest_size
octets.

void hkdf_expand (void *mac_ctx, nettle_hash_update_func *update, [Function]
nettle_hash_digest_func *digest, size_t digest_size, size_t info_size, const uint8_t
*info, size_t length, uint8_t *dst)
Expand a Pseudorandom Key (PRK) to an arbitrary size according to HKDF. The
HMAC must have been initialized, with its key being the PRK from the Extract
operation. This function will call the update and digest functions passing the mac_ctx
context parameter as an argument in order to compute digest of size digest_size.
Inputs are the info info of length info_length, and the desired derived output length
length. The output buffer is dst which must have room for at least length octets.

7.6.2 PBKDF2

The most well known PBKDF is the PKCS #5 PBKDF2 described in RFC 2898 which uses a
pseudo-random function such as HMAC-SHA1.

Nettle’s PBKDF2 functions are defined in ‘<nettle/pbkdf2.h>’. There is an abstract
function that operate on any PRF implemented via the nettle_hash_update_func,
nettle_hash_digest_func interfaces. There is also helper macros and concrete functions
PBKDF2-HMAC-SHA1, PBKDF2-HMAC-SHA256, PBKDF2-HMAC-SHA384 and
PBKDF2-HMAC-SHA512. First, the abstract function:

void pbkdf2 (void *mac_ctx, nettle_hash_update_func *update, [Function]
nettle_hash_digest_func *digest, size_t digest_size, unsigned iterations, size_t
salt_length, const uint8_t *salt, size_t length, uint8_t *dst)
Derive symmetric key from a password according to PKCS #5 PBKDF2. The PRF
is assumed to have been initialized and this function will call the update and digest
functions passing the mac_ctx context parameter as an argument in order to compute

Chapter 7: Reference 70

digest of size digest_size. Inputs are the salt salt of length salt_length, the iteration
counter iterations (> 0), and the desired derived output length length. The output
buffer is dst which must have room for at least length octets.

Like for CBC and HMAC, there is a macro to help use the function correctly.

PBKDF2 (ctx, update, digest, digest_size, iterations, [Macro]
salt_length, salt, length, dst)

ctx is a pointer to a context struct passed to the update and digest functions (of
the types nettle_hash_update_func and nettle_hash_digest_func respectively)
to implement the underlying PRF with digest size of digest_size. Inputs are the
salt salt of length salt_length, the iteration counter iterations (> 0), and the desired
derived output length length. The output buffer is dst which must have room for at
least length octets.

7.6.3 Concrete PBKDF2 functions

Now we come to the specialized PBKDF2 functions, which are easier to use than the general
PBKDF2 function.

7.6.3.1 PBKDF2-HMAC-SHA1

void pbkdf2_hmac_shal (size_t key_length, const uint8_t *key, [Function]
unsigned iterations, size_t salt_length, const uint8_t *salt, size_t
length, uint8_t *dst)
PBKDF2 with HMAC-SHA1. Derive length bytes of key into buffer dst using the
password key of length key_length and salt salt of length salt_length, with iteration
counter iterations (> 0). The output buffer is dst which must have room for at least
length octets.

7.6.3.2 PBKDF2-HMAC-SHA256

void pbkdf2_hmac_sha256 (size-t key_length, const uint8_t *key, [Function]
unsigned iterations, size_t salt_length, const uint8_t *salt, size_t
length, uint8_t *dst)
PBKDF2 with HMAC-SHA256. Derive length bytes of key into buffer dst using the
password key of length key_length and salt salt of length salt_length, with iteration
counter iterations (> 0). The output buffer is dst which must have room for at least
length octets.

7.6.3.3 PBKDF2-HMAC-SHA384

void pbkdf2_hmac_sha384 (size-t key_length, const uint8_t *key, [Function]
unsigned iterations, size_t salt_length, const uint8_t *salt, size_t
length, uint8_t *dst)
PBKDF2 with HMAC-SHA384. Derive length bytes of key into buffer dst using the
password key of length key_length and salt salt of length salt_length, with iteration
counter iterations (> 0). The output buffer is dst which must have room for at least
length octets.

Chapter 7: Reference 71

7.6.3.4 PBKDF2-HMAC-SHA512

void pbkdf2_hmac_shabl2 (size-t key_length, const uint8_t *key, [Function]
unsigned iterations, size_t salt_length, const uint8_t *salt, size_t
length, uint8_t *dst)
PBKDF2 with HMAC-SHA512. Derive length bytes of key into buffer dst using the
password key of length key_length and salt salt of length salt_length, with iteration
counter iterations (> 0). The output buffer is dst which must have room for at least
length octets.

7.7 Public-key algorithms

Nettle uses GMP, the GNU bignum library, for all calculations with large numbers. In order
to use the public-key features of Nettle, you must install GMP, at least version 3.0, before
compiling Nettle, and you need to link your programs with -1hogweed -1nettle -lgmp.

The concept of Public-key encryption and digital signatures was discovered by Whitfield
Diffie and Martin E. Hellman and described in a paper 1976. In traditional, “symmetric”,
cryptography, sender and receiver share the same keys, and these keys must be distributed
in a secure way. And if there are many users or entities that need to communicate, each
pair needs a shared secret key known by nobody else.

Public-key cryptography uses trapdoor one-way functions. A one-way function is a
function F such that it is easy to compute the value F(x) for any x, but given a value y, it
is hard to compute a corresponding x such that y = F(x). Two examples are cryptographic
hash functions, and exponentiation in certain groups.

A trapdoor one-way function is a function F that is one-way, unless one knows some
secret information about F. If one knows the secret, it is easy to compute both F and it’s
inverse. If this sounds strange, look at the RSA example below.

Two important uses for one-way functions with trapdoors are public-key encryption, and
digital signatures. The public-key encryption functions in Nettle are not yet documented;
the rest of this chapter is about digital signatures.

To use a digital signature algorithm, one must first create a key-pair: A public key and
a corresponding private key. The private key is used to sign messages, while the public key
is used for verifying that that signatures and messages match. Some care must be taken
when distributing the public key; it need not be kept secret, but if a bad guy is able to
replace it (in transit, or in some user’s list of known public keys), bad things may happen.

There are two operations one can do with the keys. The signature operation takes a
message and a private key, and creates a signature for the message. A signature is some
string of bits, usually at most a few thousand bits or a few hundred octets. Unlike paper-
and-ink signatures, the digital signature depends on the message, so one can’t cut it out of
context and glue it to a different message.

The verification operation takes a public key, a message, and a string that is claimed to
be a signature on the message, and returns true or false. If it returns true, that means that
the three input values matched, and the verifier can be sure that someone went through
with the signature operation on that very message, and that the “someone” also knows the
private key corresponding to the public key.

Chapter 7: Reference 72

The desired properties of a digital signature algorithm are as follows: Given the public
key and pairs of messages and valid signatures on them, it should be hard to compute
the private key, and it should also be hard to create a new message and signature that is
accepted by the verification operation.

Besides signing meaningful messages, digital signatures can be used for authorization.
A server can be configured with a public key, such that any client that connects to the
service is given a random nonce message. If the server gets a reply with a correct signature
matching the nonce message and the configured public key, the client is granted access. So
the configuration of the server can be understood as “grant access to whoever knows the
private key corresponding to this particular public key, and to no others”.

7.7.1 RSA

The RSA algorithm was the first practical digital signature algorithm that was constructed.
It was described 1978 in a paper by Ronald Rivest, Adi Shamir and L.M. Adleman, and
the technique was also patented in the USA in 1983. The patent expired on September 20,
2000, and since that day, RSA can be used freely, even in the USA.

It’s remarkably simple to describe the trapdoor function behind RSA. The “one-way”-
function used is

F(x) = x"e mod n

Le. raise x to the e’th power, while discarding all multiples of n. The pair of numbers
n and e is the public key. e can be quite small, even e = 3 has been used, although slightly
larger numbers are recommended. n should be about 2000 bits or larger.

If n is large enough, and properly chosen, the inverse of F, the computation of e’th roots
modulo n, is very difficult. But, where’s the trapdoor?

Let’s first look at how RSA key-pairs are generated. First n is chosen as the product of
two large prime numbers p and q of roughly the same size (so if n is 2000 bits, p and q are
about 1000 bits each). One also computes the number phi = (p-1) (q-1), in mathematical
speak, phi is the order of the multiplicative group of integers modulo n.

Next, e is chosen. It must have no factors in common with phi (in particular, it must
be odd), but can otherwise be chosen more or less randomly. e = 65537 is a popular choice,
because it makes raising to the e’th power particularly efficient, and being prime, it usually
has no factors common with phi.

Finally, a number d, d < n is computed such that e d mod phi = 1. It can be shown that
such a number exists (this is why e and phi must have no common factors), and that for
all x,

(x"e)"d mod n = x"(ed) mod n = (x"d)"e mod n = X

Using Euclid’s algorithm, d can be computed quite easily from phi and e. But it is still
hard to get d without knowing phi, which depends on the factorization of n.

So d is the trapdoor, if we know d and y = F(x), we can recover x as y"d mod n. d is
also the private half of the RSA key-pair.

The most common signature operation for RSA is defined in PKCS#1, a specification
by RSA Laboratories. The message to be signed is first hashed using a cryptographic hash
function, e.g. MD5 or SHA1. Next, some padding, the ASN.1 “Algorithm Identifier” for the
hash function, and the message digest itself, are concatenated and converted to a number

Chapter 7: Reference 73

x. The signature is computed from x and the private key as s = x~d mod n'. The signature,
s is a number of about the same size of n, and it usually encoded as a sequence of octets,
most significant octet first.

The verification operation is straight-forward, x is computed from the message in the
same way as above. Then s~e mod n is computed, the operation returns true if and only if
the result equals x.

The RSA algorithm can also be used for encryption. RSA encryption uses the public
key (n,e) to compute the ciphertext m~e mod n. The PKCS#1 padding scheme will use at
least 8 random and non-zero octets, using m of the form [00 02 padding 00 plaintext].
It is required that m < n, and therefor the plaintext must be smaller than the octet size of
the modulo n, with some margin.

To decrypt the message, one needs the private key to compute m = c”e mod n followed
by checking and removing the padding.

7.7.1.1 Nettle’s RSA support

Nettle represents RSA keys using two structures that contain large numbers (of type mpz_t).

rsa_public_key size n e [Context struct]
size is the size, in octets, of the modulo, and is used internally. n and e is the public
key.

rsa_private_key sizedpqabc [Context struct]

size is the size, in octets, of the modulo, and is used internally. d is the secret
exponent, but it is not actually used when signing. Instead, the factors p and q, and
the parameters a, b and c are used. They are computed from p, q and e such that a
emod (p-1)=1,bemod (q-1) =1, cqmodp = 1.

Before use, these structs must be initialized by calling one of

void rsa_public_key_init (struct rsa_public_key *pub) [Function]
void rsa_private_key_init (struct rsa_private_key *key) [Function]
Calls mpz_