
Flexible Software Architectures for Presentation Layers
demonstrated on Medical Documentation with Episodes and

Inclusion of Topological Report

Jens Bohl <info@jens-bohl.de>
Torsten Kunze <zone3@gmx.de>

Christian Heller <christian.heller@tu-ilmenau.de>
Ilka Philippow <ilka.philippow@tu-ilmenau.de>

Technical University of Ilmenau
Faculty for Computer Science and Automation

Institute for Theoretical and Technical Informatics
PF 100565, Max-Planck-Ring 14, 98693 Ilmenau, Germany

http://www.tu-ilmenau.de, fon: +49-(0)3677-69-1230, fax: +49-(0)3677-69-1220

Abstract. This document describes how exist-
ing design patterns can be combined to merge their
advantages into one domain- independent software
framework. This framework, called Cybernetics Ori-
ented Programming (CYBOP) [Hel03], is character-
ized by flexibility and extensibility. Further, the con-
cept of Ontology is used to structure the software ar-
chitecture as well as to keep it maintainable. A Com-
ponent Lifecycle ensures the proper startup and shut-
down of any systems built on top of CYBOP.
The practical proof of these new concepts was ac-
complished within the diploma thesis of Jens Bohl
[Boh03] which consisted of designing and develop-
ing a module called Record, of the Open Source Soft-
ware (OSS) project Res Medicinae. The major task
for this module is to provide a user interface for cre-
ating medical documentation. New structure models
such as Episodes were considered and implemented.
In this context, the integration of a graphical tool
for Topological Documentation was also highly de-
manded. The tool allows documentation with the help
of anatomical images and the setting of markers for
pathological findings.

Keywords. Design Pattern, Framework, Com-
ponent Lifecycle, Ontology, CYBOP, Res Medicinae,
Episode Based Documentation, Topological Documen-
tation

1 Introduction

Quality of software is often defined by its maintain-
ability, extensibility and flexibility. Object Oriented
Programming (OOP) should help to achieve these
goals – but this wasn’t possible by only introducing
another programming paradigm.
So, major research objectives are to find concepts and
principles to increase the reusability of software ar-
chitectures and the resulting code. Frameworks shall

prevent code duplication and development efforts. Rec-
ognizing recurring structures means finding Design
Patterns for application on similar problems. These
two concepts – frameworks and design patterns – de-
pend on each other and provide a higher flexibility of
software components [Pre94].
The aim of this work was to find suitable combina-
tions of design patterns to compose a framework that
is characterized by a strict hierarchical architecture.
Everything in universe is organized within a hierarchy
of elements – the human body for example consists
of organs, organs consist of regions, regions consist
of cells and so on. This very simple idea can also be
mapped on software architectures – and basically, this
is what this document is about.
What kind of techniques to realize such a concept
of strict hierarchy does software engineering provide?
The following chapters first introduce common design
patterns and the lifecycle of components as templates
for own ideas and then show how the resulting frame-
work Cybernetics Oriented Programming (CYBOP)
[Hel02] is designed.

2 Design Principles

2.1 Essential Design Patterns [EG96]

Design patterns are elements of reusable software.
They can be used for solving recurrent design prob-
lems and are recommendations on how to build soft-
ware in an elegant way. With the help of these pat-
terns, software shall be more extensible, flexible and
easy to maintain in respect to further enhancements.
The following patterns are essential within CYBOP.

Composite This design pattern allows creating tree-
like object structures. One object is child of another

object and has exactly one parent. This pattern is
often used to realize whole-part relations: one object
is part of another one.

+operation()

+add(in Component)

+remove(in Component)

Component

+operation()

Leaf

+operation()

+add(in Component)

+remove(in Component)

Composite

Client

*
 *

1

*

Fig. 1. Composite Pattern

Layers With the help of this pattern, software can
be organized in horizontal layers. Modules and appli-
cations can be separated into logical levels, whereby
these levels should be as independent from each other
as possible, to ensure a high substitutability.

Layer 2

Layer 1

Layer 3

Fig. 2. Layer Pattern

Chain Of Responsibility Messages initiated by a
particular object can be sent over a chain of instances
to the receiving object. So, either the message will
be transmitted over a bunch of objects or evaluated
immediately by the target object.

Model-View-Controller Dividing the presentation
layers into the logical components Model, View and
Controller, is a very approved way for designing soft-
ware for user interfaces. The model encapsulates the
data presented by the view and manipulated by the
controller.

Object 1

Object 2

Object 3

Fig. 3. Chain Of Responsibility Pattern

Controller

Model
 View

Fig. 4. Model-View-Controller Pattern

Hierarchical Model-View-Controller [JC01] The
Hierarchical Model-View-Controller combines the es-
sential design patterns Composite, Layers, and Chain
of Responsibility into one conceptual architecture. It
consists of hierarchical layers containing MVC-Triads.
These triads conventionally separate the presentation
layer into model, view, and controller. Triads commu-
nicate with each other by relating over the controller
object. Here is a short explanation of this concept, us-
ing a practical example: The upper-most triad could
represent a dialog, the middle one a container such as
a panel. In this container, a third triad, for example
a button, can be held.
All Triads communicate with each other by using the
controller component. The basic idea behind this con-
cept is to divide the presentation layer into hierarchi-
cal sections.

2.2 Component Lifecycle [ava02]

Each Component lives in a system that is respon-
sible for the component’s creation, destruction etc.
When talking about components, this article sticks
to the definition of Apache-Jakarta-Avalon [ava02],
which considers components to be a passive entity
that performs a specific role.
A component has a number of methods which need
to be called in a certain order. The order of method
calls is what is known as Component Lifecycle. An
outside, active entity is responsible for calling the
lifecycle methods in the right order. In other words,
such an entity or Component Container can control

Controller

Model
 View

Controller

Model
 View

Controller

Model
 View

Tier n - 2

Tier n - 1

Tier n

Fig. 5. Hierarchical Model-View-Controller Pattern

and use the component. The Avalon documentation
[ava02] says:

”It is up to each container to indicate which
lifecycle methods it will honor. This should
be clearly documented together with the de-
scription of the container.”

3 An Extended Component Lifecycle

The CYBOP lifecycle of components is an extension
of the lifecycle idea of Apache – basically the same
idea but another background and realization.
All whole-part associations between objects were or-
ganized under the rules of the component lifecycle.
Analogous to the lifecycle of organic cells, the rela-
tions were created and destroyed in a sequence of life-
cycle steps. These steps are realized as method calls
on the components (see figure 6).

Component exists

Component

configurated

Component

does not

exist

 new

initialize

globalize

destroy

deglobalize

Component

initialized

link

unlink
finalize

Component

ready for

use

operation 1

operation 2

operation 3

...

Fig. 6. State Diagram of CYBOB’s Component Lifecycle

4 Ontologies

An ontology is a catalogue of types that are depend-
ing on each other in hierarchical order. It is a formal
specification concerning a particular objective. CY-
BOP consists of three such ontologies:

– Basic Ontology
– Model Ontology
– System Ontology

Figure 7 shows the model ontology. The layer su-
per types are Record, Unit, Heading and Description.
These classes are super types of all classes in a par-
ticular ontological level.
The right side shows a concrete implementation of
the model ontology – the Electronic Health Record
[ope02]. This data structure contains all information
concerning a particular patient. The figure shows Problem
types in level Unit. These consist of episodes contain-
ing instances of PartialContact. In level Heading,
the structural elements of a partial contact can be
found – Subjective, Objective, Assessment and
Plan. Therapeutical issues are placed in level Description
– such as Medication with particular dose.
As shown, the concept of ontology can be used to

2

1

4

3

Item

Heading

Record

Description

HealthRecord

Objective

BloodPressure

Unit
 Problem

Model - Ontology
 Beispiel

1

*

1

*

1

1

Fig. 7. Model Ontology

organize data structures in a hierarchical order by
defining logical layers with super types.

5 CYBOP

Section two introduced essential design patterns that
represent the main structure of the CYBOP frame-
work. Section three explained the Component Lifecy-
cle and section four the well-known idea of ontology.
Now these design principles and conceptual architec-
tures will be combined to comprise their advantages
and to increase the demanded quality characteristics:
high flexibility and maintainability.
Structure by Hierarchy – this is the basic idea be-
hind CYBOP. Extending the concept of Hierarchi-
cal Model-View-Controller to whole software archi-
tectures, CYBOP was designed to be the domain-
independent backbone for information systems of any

kind. Originally designed for medical purposes, it should
also be usable for insurance, financial or any other
standard applications in future.

5.1 Class Item

As shown, tree-like structures can be realized by the
Composite pattern. In CYBOP, this pattern can be
found in class Item which is super type of all other
classes. References, respectively relations to child ele-
ments are held within a hashmap. No attributes were
used except of this hashmap. Every element of the
map can be accessed by a special key value. So, no
particular get- or set-methods were needed for at-
tributes.

+getRoot() : Item

+getParent() : Item

+setParent(in parent : Item)

+getChildren() : HashMap

+setChildren(in children : HashMap)

+...()

-parent : Item

-children : HashMap

Item

java.lang.Object

1

*

Fig. 8. Class Item

5.2 Basic Structure

Comprising the design patterns Composite, Layers,
and Chain of Responsibility, the framework CYBOP
is comparable to a big tree containing objects orga-
nized in different levels. Figure 9 shows the object
tree and the different levels of granularity.

6 Record – An EHR Module

The practical background for the application of CY-
BOP is Res Medicinae. A modern clinical information
system is the aim of all efforts in this project. In fu-
ture, it shall serve medical documentation, archiving,

Layer
 1

Layer
 2

Layer
 3

Root

Child 1

Child 4
 Child 5

Child 2

Child 6
 Child 7

Child 3

Child 8
 Child 9

Fig. 9. Basic Structure

laboratory work etc. Res Medicinae is separated into
single modules depending on different tasks.
One of these modules is Record – an application for
documenting medical information (see figure 10). In
addition to new documentation models, it also con-
tains a tool for topological documentation.
Starting from an over-all view of the human body, it
is possible to reach every organ or region of the body
in detail (see figure 11).

Fig. 10. Screenshot of Record [urb]

Fig. 11. Excerpt from Topological Structure of Human
Skeleton [urb]

7 Summary

Software design patterns are essential elements of frame-
works. They can be combined to comprise their ad-
vantages and to realize hierarchical structures.
These structures can be created and destroyed in the
lifecycle of components. In that lifecycle, object re-
lations become more transparent and are easier to
control and to maintain.
Ontologies can help to model particular domains and
to layer software. Every level of these ontologies has
a particular super type, whereby these types depend
on each other by inheritance. This concept supports
the modelling and logical separation of software into
hierarchical architectures. The granularity of the on-
tology (number of ontological levels) can be adapted
to particular requests.
By applying the new concepts introduced in this doc-
ument, the quality of software can be greatly increased.
The time for building systems can be reduced to a
minimum. The clear architecture avoids common con-
fusion as the systems grow.

8 Acknowledgements

Our special thanks go to all Enthusiasts of the Open
Source Community who have provided us with a great
amount of knowledge through a comprising code base
to build on. We’d also like to acknowledge the contrib-
utors of Res Medicinae, especially all medical doctors
who supported us with their analysis work [CH02]
and specialised knowledge in our project mailing lists.
Further on, great thanks goes to the Urban and Fis-
cher publishing company, for providing anatomical
images from their Sobotta – Atlas der Anatomie.

9 About the Author

Jens Bohl, born in 1978, has been studying computer
science from October 1997 until January 2003 at the
Technical University of Ilmenau with subsidiary sub-
ject Medical Informatics. During this period, he worked
six months at software design and management AG.
He is a member of the Java-based Res Medicinae
project and active developer of the Open Source Com-
munity. In March 2003, he started working as a soft-
ware engineer and consultant in Frankfurt/Main.

References

[ava02] Apache jakarta avalon framework.
http://jakarta.apache.org/avalon/index.html,
2002.

[Boh03] Jens Bohl. Moeglichkeiten der Gestaltung
flexibler Softwarearchitekturen fuer Praesen-
tationsschichten, dargestellt anhand episoden-
basierter medizinischer Dokumentation unter
Einbeziehung topologischer Befundung. 2003.

[CH02] Roland Colberg et al. Christian Heller,
Karsten Hilbert. Analysedokument zur Er-
stellung eines Informationssystems fuer den
Einsatz in der Medizin. 2002.

[EG96] Ralph Johnson et al. Erich Gamma,
Richard Helm. Entwurfsmuster–Elemente
wiederverwendbarer objektorientierter Software.
Bonn: Addison-Wesley, 1996.

[Hel02] Christian Heller. Cybernetics oriented program-
ming. http://resmedicinae.sourceforge.net, 2002.

[Hel03] Christian Heller. Cybop-cybernetic oriented pro-
gramming. http://www.cybop.net, 2003.

[JC01] Gaurav Pal Jason Cai, Ranjit Kapila. Hmvc: The
layered pattern for developing strong client tiers.
http://www.javaworld.com, 2001.

[ope02] Open ehr. http://www.openehr.org, 2002.
[Pre94] W. Pree. Meta patterns – a means for captur-

ing the essentials of reusable object-oriented de-
sign. In Proceedings of ECOOP ’94, pages 150–
162, 1994.

[urb] Urban und fischer verlag, muenchen.
http://www.urbanfischer.de/.

