|
D.4.3.5 Ext
Procedure from library homolog.lib (see section homolog_lib).
- Usage:
Ext(v,M,N[,any]); v int resp. intvec, M,N modules
- Compute:
A presentation of Ext^k(M’,N’); for k=v[1],v[2],... where
M’=coker(M) and N’=coker(N). Let
0 <-- M' <-- F0 <-M-- F1 <-- F2 <--... ,
0 <-- N' <-- G0 <--N- G1
be a free resolution of M’, resp. a presentation of N’. Consider
the commutative diagram
0 0 0
|^ |^ |^
--> Hom(Fk-1,N') -Ak-> Hom(Fk,N') -Ak+1-> Hom(Fk+1,N')
|^ |^ |^
--> Hom(Fk-1,G0) -Ak-> Hom(Fk,G0) -Ak+1-> Hom(Fk+1,G0)
|^ |^
|C |B
Hom(Fk,G1) ------> Hom(Fk+1,G1)
(Ak,Ak+1 induced by M and B,C induced by N).
Let K=modulo(Ak+1,B), J=module(Ak)+module(C) and Ext=modulo(K,J),
then we have exact sequences
R^p --K-> Hom(Fk,G0) --Ak+1-> Hom(Fk+1,G0)/im(B),
R^q -Ext-> R^p --K-> Hom(Fk,G0)/(im(Ak)+im(C)).
Hence, Ext presents Ext^k(M’,N’).
- Return:
- module Ext, a presentation of Ext^k(M’,N’) if v is of type int
- a list of Ext^k (k=v[1],v[2],...) if v is of type intvec.
- In case of a third argument of any type return a list l:
- Display:
printlevel >=0: dimension, vdim of Ext^k for each k (default).
printlevel >=1: matrices Ak, Ak+1 and kbase of Ext^k in Hom(Fk,G0)
(if finite dimensional)
- Note:
In order to compute Ext^k(M,N) use the command Ext(k,syz(M),syz(N));
or: list P=mres(M,2); list Q=mres(N,2); Ext(k,P[2],Q[2]);
Example:
LIB "homolog.lib";
int p = printlevel;
printlevel = 1;
ring r = 0,(x,y),dp;
ideal i = x2-y3;
ideal j = x2-y5;
list E = Ext(0..2,i,j); // Ext^k(r/i,r/j) for k=0,1,2 over r
→ // Computing Ext^0 (help Ext; gives an explanation):
→ // Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of coker(M),
→ // and 0<--coker(N)<--G0<--G1 a presentation of coker(N),
→ // then Hom(F0,G0)-->Hom(F1,G0) is given by:
→ y3-x2
→ // and Hom(F-1,G0) + Hom(F0,G1)-->Hom(F0,G0) is given by:
→ 0,-y5+x2
→
→ // dimension of Ext^0: -1
→
→ // Computing Ext^1 (help Ext; gives an explanation):
→ // Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of coker(M),
→ // and 0<--coker(N)<--G0<--G1 a presentation of coker(N),
→ // then Hom(F1,G0)-->Hom(F2,G0) is given by:
→ 0
→ // and Hom(F0,G0) + Hom(F1,G1)-->Hom(F1,G0) is given by:
→ y3-x2,-y5+x2
→
→ // dimension of Ext^1: 0
→ // vdim of Ext^1: 10
→
→ // Computing Ext^2 (help Ext; gives an explanation):
→ // Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of coker(M),
→ // and 0<--coker(N)<--G0<--G1 a presentation of coker(N),
→ // then Hom(F2,G0)-->Hom(F3,G0) is given by:
→ 1
→ // and Hom(F1,G0) + Hom(F2,G1)-->Hom(F2,G0) is given by:
→ 0,-y5+x2
→
→ // dimension of Ext^2: -1
→
qring R = std(i);
ideal j = fetch(r,j);
module M = [-x,y],[-y2,x];
printlevel = 2;
module E1 = Ext(1,M,j); // Ext^1(R^2/M,R/j) over R=r/i
→ // Computing Ext^1 (help Ext; gives an explanation):
→ // Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of coker(M),
→ // and 0<--coker(N)<--G0<--G1 a presentation of coker(N),
→ // then Hom(F1,G0)-->Hom(F2,G0) is given by:
→ x, -y,
→ y2,-x
→ // and Hom(F0,G0) + Hom(F1,G1)-->Hom(F1,G0) is given by:
→ x, -y,-y5+x2,0,
→ y2,-x,0, -y5+x2
→
→ // dimension of Ext^1: -1
→
list l = Ext(4,M,M,1); // Ext^4(R^2/M,R^2/M) over R=r/i
→ // Computing Ext^4 (help Ext; gives an explanation):
→ // Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of coker(M),
→ // and 0<--coker(N)<--G0<--G1 a presentation of coker(N),
→ // then Hom(F4,G0)-->Hom(F5,G0) is given by:
→ x, -y,0, 0,
→ y2,-x,0, 0,
→ 0, 0, x, -y,
→ 0, 0, y2,-x
→ // and Hom(F3,G0) + Hom(F4,G1)-->Hom(F4,G0) is given by:
→ x, -y,0, 0, -x,0, -y2,0,
→ y2,-x,0, 0, 0, -x,0, -y2,
→ 0, 0, x, -y,y, 0, x, 0,
→ 0, 0, y2,-x,0, y, 0, x
→
→ // dimension of Ext^4: 0
→ // vdim of Ext^4: 2
→
→ // columns of matrix are kbase of Ext^4 in Hom(F4,G0)
→ 1,0,
→ 0,y,
→ 0,1,
→ 1,0
→
→ // element 1 of kbase of Ext^4 in Hom(F4,G0)
→ // as matrix: F4-->G0
→ 1,0,
→ 0,1
→ // element 2 of kbase of Ext^4 in Hom(F4,G0)
→ // as matrix: F4-->G0
→ 0,y,
→ 1,0
→
printlevel = p;
|